Flow, Turbulence and Combustion

, Volume 78, Issue 1, pp 17–33

Combined Numerical and Experimental Investigation of a 15-cm Valveless Pulsejet

  • T. Geng
  • M. A. Schoen
  • A. V. Kuznetsov
  • W. L. Roberts
Article

Abstract

The pulsejet, due to its simplicity, may be an ideal micro propulsion system. In this paper, modern computational and experimental tools are used to investigate the operation of a 15-cm overall length valveless pulsejet. Gas dynamics, acoustics and chemical kinetics are studied to gain understanding of various physical phenomena affecting pulsejet operation, scalability, and efficiency. Pressure, temperature, thrust, and frequency are measured as a function of valveless inlet and exit lengths and different geometries. At this length scale, it is necessary to run the pulsejets on hydrogen fuel. Numerical simulations are performed utilizing CFX to model the 3-D compressible vicious flow in the pulsejet using the integrated Westbrook–Dryer single step combustion model. The turbulent flow and reaction rate are modeled with the kɛ model and the Eddy Dissipation Model (EDM), respectively. Simulation results provide physical insight into the pulsejet cycle; comparisons with experimental data are discussed.

Key words

pulsejet valveless pulsejet micro-propulsion thermoacoustics 

Nomenclature

Da

Damköhler number, ratio of flow times to chemical times

Prt

turbulent Prandtl number, ratio of turbulent kinematic viscosity to turbulent thermal diffusivity

Pk

shear production of turbulence

SE

energy source

tflow

fluid timescale, k/ɛ

tchem

chemical time scale

νKI

stoichiometric coefficient for reactant I in reaction K

νKI

stoichiometric coefficient for product I in reaction K

k

turbulence kinetic energy per unit mass

ɛ

turbulence dissipation rate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsien, H. (ed.): Jet Propulsion, Guggenheim Aero. Lab. (1946)Google Scholar
  2. 2.
    Ogorelec, B.: Valveless Pulsejet Engines. URL: http://www.pulse-jets.com/valveless/
  3. 3.
    Lockwood, R.M.: Advanced Research Division Report No. 508. Hiller Aircraft Co. (1963)Google Scholar
  4. 4.
    Lockwood, R.M., Patterson, W.G.: Advanced Research Division Report No. ARD-307, U. S. Army TRECOM Report 64-20. Hiller Aircraft Co., (1964)Google Scholar
  5. 5.
    Logan, J.G.: Project SQUID Tech. Memo. No. CAL-42. Cornell Aeronaut. Lab., (1951)Google Scholar
  6. 6.
    Logan, J.G.: Project SQUID Tech. Memo. No. CAL-27. Cornell Aeronaut. Lab., (1949)Google Scholar
  7. 7.
    Kentfield, J.A.C., Fernandes, L.C.V.: Improvements to the performance of a prototype pulse, pressure-gain, gas turbine combustor. J. Eng. Gas Turbines Power 112, 67–72 (1990)Google Scholar
  8. 8.
    Waitz, I.A., Gauba, G., Tzeng, Y.: Combustors for micro-gas turbine engines. J. Fluids Eng. 120, 109–117 (1998)Google Scholar
  9. 9.
    Spadaccini, C.M., Mehra, A., Lee, J., Zhang, X., Lukachko, S., Waitz, I.A.: High power density silicon combustion systems for micro gas turbine engines. J. Eng. Gas Turbines Power 125, 709–719 (2003)CrossRefGoogle Scholar
  10. 10.
    Geng, T., Kiker, A., Ordon, R., Schoen, M., Kuznetsov, A.V., Scharton, T. Roberts, W.L.: Experimentation and Modeling of Pulsed Combustion Engines. 4th Joint Meeting of the US Sections of the Combustion Institute, Philadelphia, (2005)Google Scholar
  11. 11.
    Westbrook, C.K., Dryer, F.L.: Simplified reaction mechanisms for the oxidation of hydrocarbon. Combust. Sci. Technol. 27, 31–43 (1981)Google Scholar
  12. 12.
    Wan, Q., Roberts, W.L., Kuznetsov, A.V.: Computational analysis of the feasibility of a micro-pulsejet. Int. Commun. Heat Mass Transfer 32, 19–26 (2005)CrossRefGoogle Scholar
  13. 13.
    Shepherd, D.G.: Aerospace Propulsion. American Elsevier, New York (1972)Google Scholar
  14. 14.
    Schoen, M.: Experimental Investigations in 15 Centimeter Class Pulsejet Engines. Master dissertation, Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, North Carolina, (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • T. Geng
    • 1
  • M. A. Schoen
    • 1
  • A. V. Kuznetsov
    • 1
  • W. L. Roberts
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations