Flow, Turbulence and Combustion

, Volume 76, Issue 4, pp 383–390 | Cite as

Traffic Flow Models with Phase Transitions

  • Rinaldo M. Colombo
  • Paola Goatin


The theory of hyperbolic conservation laws has been successfully applied to the study of vehicular traffic flows. We present here some models showing phase transitions, that in terms of traffic flows correspond to two distinct behaviors, free or congested.


Hyperbolic conservation laws Riemann problem Phase transitions Continuum traffic models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeyaratne, R., Knowles, J.K.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114, 119–154 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aw, A., Klar, A., Materne, T., Rascle, M.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63, 259–278 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60, 916–938 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bagnerini, P., Colombo, R.M., Corli, A.: On the role of source terms in continuum traffic flow models. To appear in Mathematical and Computer Modeling.Google Scholar
  5. 5.
    Bressan, A.: Hyperbolic Systems of Conservation Laws. Oxford University Press (2000)Google Scholar
  6. 6.
    Colombo, R.M.: A 2×2 hyperbolic traffic flow model. Math. Comput. Model. 35(5–6), 683–688 (2002). Traffic flow—modeling and simulationMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Colombo, R.M.: Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63(2), 708–721 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Colombo, R.M., Goatin, P., Priuli, F.S.: Global well posedness of a traffic flow model with phase transitions. To appear in Nonlinear Analysis Series A: Theory, Methods & Applications.Google Scholar
  9. 9.
    Colombo, R.M., Maternini, G.: A new simulation model for the management of unstable traffic flow. In New Technologies and Modeling or Roads Applicationsto Design and Management. SIIV, October 2004. ISBN: 888 4532 698Google Scholar
  10. 10.
    Drake, J.S., Schofer, J.L., May, A.D.: A statistical analysis of speed density hypotheses. Highway Res. Rec. 154, 53–87 (1967)Google Scholar
  11. 11.
    Edie, L.C.: Car-following and steady-state theory for noncongested traffic. Oper. Res. 9, 66–76 (1961)MATHMathSciNetGoogle Scholar
  12. 12.
    Goatin, P.: The Aw-Rascle traffic flow model with phase transition. To appear in Mathematical and Computer Modeling.Google Scholar
  13. 13.
    Kerner, B.S.: Phase transitions in traffic flow. In: Helbing, D., Hermann, H., Schreckenberg, M., Wolf, D. (eds.) Traffic and Granular Flow '99, pp. 253–283. Springer Verlag (2000)Google Scholar
  14. 14.
    Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. Lond. Ser. A. 229, 317–345 (1955)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Slemrod, M.: Admissibility criteria for propagating phase boundaries in a Van der Waals fluid. Arch. Ration. Mech. Anal. 81, 301–315 (1983)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Whitham, G.B.: Linear and Nonlinear Waves. John Wiley and Sons, New York (1999)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of MathematicsBresciaItaly
  2. 2.Laboratoire d’Analyse Non linéaire Appliquée et Modélisation, I.S.I.T.V.Université du Sud – Toulon – VarLa Valette du Var CedexFrance

Personalised recommendations