Advertisement

Flow, Turbulence and Combustion

, Volume 75, Issue 1–4, pp 245–274 | Cite as

Conditional Moment Closure for Large Eddy Simulations

  • S. Navarro-Martinez
  • A. Kronenburg
  • F. Di Mare
Article

Abstract

A conditional moment closure (CMC) based combustion model for large-eddy simulations (LES) of turbulent reacting flow is proposed and evaluated. Transport equations for the conditionally filtered species are derived that are consistent with the LES formulation and closures are suggested for the modelling of the conditional velocity, conditional scalar dissipation and the fluctuations around the conditional mean. A conventional β-probability density distribution of the scalar is used together with dynamic modelling for the sub-grid fluxes. The model is validated by comparison of simulations with measurements of a piloted, turbulent methane-air jet diffusion flame.

Key Words

LES CMC methods turbulent combustion non-premixed flames 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colucci, P.J., Jaberi, F.A., Givi, P. and Pope, S.B., Filtered density function for large eddy simulation of non-premixed turbulent reacting flows. Phys. Fluids 10 (1998) 499.Google Scholar
  2. 2.
    Branley, N. and Jones, W.P., Large eddy simulation of a turbulent non-premixed flame. Combust. Flame 127 (2001) 1914–1934.CrossRefGoogle Scholar
  3. 3.
    DiMare, F., Jones, W.P. and Menzies, K.R., Large eddy simulation of a model gas turbine combustor. Combust. Flame 137 (2004) 278–294.Google Scholar
  4. 4.
    Kempf, A., Lindstedt, R.P. and Janicka, J., Large eddy simulations of a bluff-body stabilized non-premixed flame. Combust. Flame (submitted for publication).Google Scholar
  5. 5.
    Pitsch, H. and Steiner, H., Large-eddy simulation of a turbulent piloted methane/air. Phys. Fluids 12(10) (2000) 2542–2554.CrossRefADSGoogle Scholar
  6. 6.
    Pitsch, H., Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. In: 29th International Symposium on Combustion (2002).Google Scholar
  7. 7.
    Bushe, W.K. and Steiner, H., Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows. Phys. Fluids A 11 (1999) 1896–1906.ADSzbMATHGoogle Scholar
  8. 8.
    Klimenko, A.Y. and Bilger, R.W., Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25 (1999) 595–687.CrossRefGoogle Scholar
  9. 9.
    Kuo, K.K., Principles of Combustion. Wiley, New York (1986).Google Scholar
  10. 10.
    Poinsot, T. and Veynante, D., Theoretical and Numerical Combustion. R.T. Edwards, Inc. (2001).Google Scholar
  11. 11.
    Peters, N., Turbulent Combustion. Cambridge University Press, Cambridge (2000).zbMATHGoogle Scholar
  12. 12.
    Gao, F. and O'Brien, E.E., A large eddy simulation for turbulent reacting flows. Phys. Fluids A 5(6) (1993) 1282–1284.CrossRefADSzbMATHGoogle Scholar
  13. 13.
    Lighthill, M.J., Introduction to Fourier Analysis. Cambridge University Press, Cambridge (1958).zbMATHGoogle Scholar
  14. 14.
    Steiner, H. and Bushe, W.K., Large-eddy simulation of a turbulent reacting jet with conditional source estimation. Phys. Fluids 25 (2001) 595–687.Google Scholar
  15. 15.
    Bilger, R.W., Conditional moment closure for turbulent reacting flow. Phys. Fluids A 5 (1993) 436–444.CrossRefADSzbMATHGoogle Scholar
  16. 16.
    Pitsch, H. and Steiner, H., Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. In: 28th International Symposium on Combustion (2000).Google Scholar
  17. 17.
    Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P., Numerical Recipes in C. Cambridge University Press, Cambridge (1997).Google Scholar
  18. 18.
    Pitsch, H., Chen, M. and Peters, N., Unsteady flamelet modeling of turbulent hydrogen/air diffusion flames. Proc. Combust. Inst. 1057–1064 (1998).Google Scholar
  19. 19.
    Cleary, M.J. and Kent, J.H., A numerical method for conditional moment closure. In: Australian Symposium on Combustion (2003).Google Scholar
  20. 20.
    Kim, S.H. and Huh, K.Y., Second-order conditional moment closure modelling of turbulent piloted jet diffusion flames. Combust. Flame 138(4) (2004) 336–352.CrossRefGoogle Scholar
  21. 21.
    Kronenburg, A., Double conditioning of turbulent scalar transport equations in turbulent non-premixed flames. Phys. Fluids 16(7) (2004) 2640–2648.CrossRefADSGoogle Scholar
  22. 22.
    Smagorinsky, J., General circulation experiments with the primitive equations, Part I: The basic experiment. Month. Weather Rev. 91 (1963) 99–164.ADSGoogle Scholar
  23. 23.
    Pope, S.B., Turbulent Flows. Cambridge University Press, Cambridge (2001).Google Scholar
  24. 24.
    Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7) (1991) 1760–1765.CrossRefADSzbMATHGoogle Scholar
  25. 25.
    Piomelli, U. and Liu, J., Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7(4) (1995) 839–848.CrossRefADSzbMATHGoogle Scholar
  26. 26.
    Ghosal, S., Lund, T.S., Moin, P. and Akselvoll, K., A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286 (1995) 229–255.ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Schmidt, H. and Schumann, U., Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 511–562 (1989).Google Scholar
  28. 28.
    Pierce, C.D. and Moin, P., A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10(12) (1998) 3041–3044.CrossRefADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Cook, A.W. and Riley. J.J., A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6(8) (1994) 2868–2870.CrossRefADSGoogle Scholar
  30. 30.
    Kops, S.M.D., Riley, J.J., Kosaly, G. and Cook, A.W., Investigation of modeling for non-premixed turbulent combustion. Flow Turbulence Combust. 60 (1998) 105–122.zbMATHGoogle Scholar
  31. 31.
    Girimaji, S.S. and Zhou, Y., Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids 8(5) (1996) 1224–1236.CrossRefADSzbMATHGoogle Scholar
  32. 32.
    DiMare, F., Large eddy simulation of reacting and non-reacting turbulent flows. Ph.D. Thesis, Imperial College, University of London (2002).Google Scholar
  33. 33.
    Rhie, C.M. and Chow, W.L., Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11) (1983) 1525–1532.CrossRefzbMATHADSGoogle Scholar
  34. 34.
    Jones, W.P. and Lindstedt, R.P., Global reaction schemes for hydrocarbon combustion. Comput. Fluids 73 (1988) 233–249.Google Scholar
  35. 35.
    Brizuela, E.A., A contribution towards the mathematical modelling of intermittent PDFS. Combust. Flame 132 (2003) 275–279.CrossRefGoogle Scholar
  36. 36.
    Jimenez, J., Linan, A., Rogers, M.M. and Higuera, F.J., A priori testing of sub-grid models for chemically reacting nonpremixed turbulent shear flows. J. Fluid Mech. 349 (1997) 149–171.ADSzbMATHGoogle Scholar
  37. 37.
    Wall, C., Boersma, B.J. and Moin, P., An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed turbulent combustion with heat release. Phys. Fluids 12(10) (2000) 2522–2529.CrossRefADSGoogle Scholar
  38. 38.
    Barlow, R.S. and Frank, J., Effects of turbulence on species mass fractions in methane-air jet flames. Proc. Combust. Inst. 27 (1998) 1087.Google Scholar
  39. 39.
    Schneider, C., Dreizler, A., Janicka, J. and Hassel, E.P., Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135 (2003) 185–190.CrossRefGoogle Scholar
  40. 40.
    Roomina, M.R. and Bilger, R., Conditional moment closure (CMC) predictions of a turbulent methane-air jet flame. Combust. Flame 125 (2001) 1176–1195.CrossRefGoogle Scholar
  41. 41.
    Xu, J. and Pope, S.B., PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123 (2000) 281–307.CrossRefGoogle Scholar
  42. 42.
    Karpetis, A.N. and Barlow, R.S., Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proc. Combust. Inst. 30 (2004) 665–672.Google Scholar
  43. 43.
    Klimenko, A.Y., Note on the conditional moment closure in turbulent shear flows. Phys. Fluids 7(2) (1995) 446–448.CrossRefADSzbMATHGoogle Scholar
  44. 44.
    Yoshizawa, A., Statistical theory for compressible turbulent shear flows, with the application to subgrid modelling. Phys. Fluids 29(7) (1986) 2152–2164.CrossRefADSzbMATHGoogle Scholar
  45. 45.
    Navarro-Martinez, S. and Kronenburg, A., Conditional moment closure in large eddy simulation. In: 2nd International Workshop on trends in Numerical and Physical Modelling of Turbulent Process in Gas Turbine Combustors, Heidelberg, Germany, pp. 29–36 (2004).Google Scholar
  46. 46.
    Kempf, A., Flemming, A.F. and Janicka, J., Investigation of length scales, scalar dissipation and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30 (2005) 557–565.Google Scholar
  47. 47.
    Meyer, M., The application of detailed and systematically reduced chemistry to transient laminar flames. Ph.D. Thesis, Imperial College, University of London (2001).Google Scholar
  48. 48.
    Barlow, R.S., Karpetis, A.N., Frank, J.H. and Chen, J.Y., Scalar profile and no formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127 (2001) 2101–2118.CrossRefGoogle Scholar
  49. 49.
    Danaila, I. and Boersma, B.J., Direct numerical simulation of bifurcating jets. Phys. Fluids 12(5) (2000).Google Scholar
  50. 50.
    Klein, M., Sadiki, A. and Janicka, J., A digital filter based generation of inflow data for apatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2003) 652–665.CrossRefADSzbMATHGoogle Scholar
  51. 51.
    Barlow, R.S. and Karpetis, A.N., Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames. Proc. Combust. Inst. 30 (2004) 673–680.Google Scholar
  52. 52.
    Barlow, R.S. and Karpetis, A.N., Measurements of scalar variance, scalar dissipation and length scales in turbulent piloted methane/air jet flames. Flow Turbulence Combust. 72 (2004) 427–448.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Navarro-Martinez
    • 1
  • A. Kronenburg
    • 1
  • F. Di Mare
    • 1
  1. 1.Department of Mechanical EngineeringImperial CollegeLondonU.K.

Personalised recommendations