Advertisement

Apyrase with anti-platelet aggregation activity from the nymph of the camel tick Hyalomma dromedarii

  • Hassan M. M. MasoudEmail author
  • Mohamed S. Helmy
  • Doaa A. Darwish
  • Mohamed M. Abdel-Monsef
  • Mahmoud A. Ibrahim
Article
  • 36 Downloads

Abstract

Apyrase is one of the essential platelet aggregation inhibitors in hematophagous arthropods due to its ability to hydrolyze ATP and ADP molecules. Here, an apyrase (TNapyrase) with antiplatelet aggregation activity was purified and characterized from the nymphs of the camel tick Hyalomma dromedarii through anion exchange and gel filtration columns. The homogeneity of TNapyrase was confirmed by native-PAGE, SDS-PAGE as well as with isoelectric focusing. Purified TNapyrase had a molecular mass of 25 kDa and a monomer structure. TNapyrase hydrolyzed various nucleotides in the order of ATP > PPi > ADP > UDP > 6GP. The Km value was 1.25 mM ATP and its optimum activity reached at pH 8.4. The influence of various ions on TNapyrase activity showed that FeCl2, FeCl3 and ZnCl2 are activators of TNapyrase. EDTA inhibited TNapyrase activity competitively with a single binding site on the molecule and Ki value of 2 mM. Finally, TNapyrase caused 70% inhibition of ADP-stimulated platelets aggregation and is a possible target for antibodies in future tick vaccine studies.

Keywords

Camel tick nymph Hyalomma dromedarii Apyrase Purification Antiplatelet aggregation 

Abbreviations

ADP

Adenosine diphosphates

ATP

Adenosine triphosphates

6GP

6-Phosphogluconate

PPi

Inorganic phosphate

PPP

Platelet poor plasma

PRP

Platelet rich plasma

TNapyrase

Tick nymph apyrase

Notes

Acknowledgements

The National Research Centre, Egypt is greatly appreciated for funding this study.

References

  1. Abdullah H, El-Shanawany E, Abdel-Shafy S, Abou-Zeina H, Abdel-Rahman E (2018) Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels. Vet World 11:1109–1119PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bednar B, Condra C, Gould RJ, Connolly TM (1995) Platelet aggregation monitored in a 96 well microplate reader is useful for evaluation of platelet agonists and antagonists. Thromb Res 77:453–463PubMedCrossRefGoogle Scholar
  3. Brackney DE, Armstrong PM (2016) Transmission and evolution of tick-borne viruses. Curr Opin Virol 21:67–74PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedPubMedCentralCrossRefGoogle Scholar
  5. Caimano MJ, Drecktrah D, Kung F, Samuels DS (2016) Interaction of the Lyme disease spirochete with its tick vector. Cell Microbiol 18:919–927PubMedPubMedCentralCrossRefGoogle Scholar
  6. Champagne DE, Smartt CT, Ribeiro JMC, James AA (1995) The salivary gland-spesific apyrase of the mosquito Aedes aegyptiis a member of the 5%-nucleotidase family. Proc Natl Acad Sci USA 92:694–698PubMedCrossRefGoogle Scholar
  7. Cheeseman MT (1998) Characterization of apyrase activity from the salivary glands of the cat flea Ctenocephalides felis. Insect Biochem Mol Biol 28:1025–1030PubMedCrossRefGoogle Scholar
  8. Chitimia-Dobler L, Schaper S, Rieß R, Bitterwolf K, Frangoulidis D, Bestehorn M, Springer A, Oehme R, Drehmann M, Lindau A, Mackenstedt U, Strube C, Dobler G (2019) Imported Hyalomma ticks in Germany in 2018. Parasites Vectors 12:134PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cote YP, Picher M, St-Jean P, Bliveau R, Potier M, Beaudoin AR (1991) Identification and localization of ATP-diphosphohydrolase (apyrase) in bovine aorta: relevance to vascular tone and platelet aggregation. Biochim Biophys Acta 1078:187–191PubMedCrossRefGoogle Scholar
  10. Darwish DA, Masoud HM, Ibrahim MA (2015) Apyrase from embryo of the camel tick Hyalomma dromedarii. RJPBCS 6(1):1687–1695Google Scholar
  11. De la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE (2008) Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 13:6938–6946PubMedCrossRefGoogle Scholar
  12. Dutta S, Gogoi D, Mukherjee AK (2015) Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: inhibition of anticoagulant activity by low molecular weight heparin. Biochimie 110:93–106PubMedCrossRefGoogle Scholar
  13. Frassetto SS, Dias RD, Sarkis JJF (1993) Characterization of an ATP diphosphohydrolase activity (apyrase, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem 129:47–55PubMedCrossRefGoogle Scholar
  14. Gao XD, Kaigorodov V, Jigami Y (1999) YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. J Biol Chem 274:21450–21456PubMedCrossRefGoogle Scholar
  15. Hansford KM, Carter D, Gillingham EL, Hernandez-Triana LM, Chamberlain J, Cull B, McGinley L, Phipps LP, Medlock JM (2019) Hyalomma rufipes on an untraveled horse: Is this the first evidence of Hyalomma nymphs successfully moulting in the United Kingdom? Ticks Tick-Borne Dis 10:704–708PubMedCrossRefGoogle Scholar
  16. Hughes AL (2013) Evolution of the salivary apyrases of blood-feeding arthropods. Gene 527:123–130PubMedCrossRefGoogle Scholar
  17. Ibrahim MA, Masoud HMM (2018) Thrombin inhibitor from the salivary gland of the camel tick Hyalomma dromedarii. Exp Appl Acarol 74:85–97PubMedCrossRefGoogle Scholar
  18. Ibrahim MA, Ghazy AM, Maharem T, Khalil M (2001a) Factor Xa (FXa) inhibitor from the nymphs of the camel tick Hyalomma dromedarii. Comp Biochem Physiol B 130(4):501–512PubMedCrossRefGoogle Scholar
  19. Ibrahim MA, Ghazy AM, Maharem T, Khalil M (2001b) Isolation and properties of two forms of thrombin inhibitor from the nymphs of the camel tick Hyalomma dromedarii (Acari: Ixodidae). Exp Appl Acarol 25:675–698PubMedCrossRefGoogle Scholar
  20. Ibrahim MA, Ghazy AM, Masoud HMM (2015) Catalase from larvae of the camel tick Hyalomma dromedarii. Biochem Biophys Reports 4:411–416CrossRefGoogle Scholar
  21. Ibrahim MA, Mohamed MM, Ghazy AM, El-Mogy M, Masoud HMM (2016) Purification and characterization of two glutathione peroxidases from embryo of the camel tick Hyalomma dromedarii. Russian J Bioorg Chem 42(3):272–281CrossRefGoogle Scholar
  22. Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proce Nat Acad Sci USA 95(14):8070–8074CrossRefGoogle Scholar
  23. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–14PubMedCrossRefGoogle Scholar
  24. Kazimírová M, Stibrániová I (2013) Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 3:43PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kettlun AM, Urra R, Leyton M, Valenzuela MA, Mancilla M, Traverso-Cori A (1992) Purification and characterization of two isoapyrases from Solanum tuberosum var Ultimus. Phytochemistry 31(11):3691–3696CrossRefGoogle Scholar
  26. Kettlun AM, Alvarez A, Quintar R, Valenzuela MA, Collados L, Aranda E, Banda A, Chayet L, Chiong M, Mancilla M, Traverso-Cori A (1994) Human placental ATP-diphosphohydrolase biochemical characterization, regulation and function. Int J Biochem 26:437–448PubMedCrossRefGoogle Scholar
  27. Knowles AF (2011) The GDA1_CD39 superfamily: NTDPases with diverse functions. Purinergic Signal 7:21–45PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kocan KM, Blouin EF, Barbet AF (2009) Anaplasmosis control: Past, present, and future. Ann N Y Acad Sci 916:501–509CrossRefGoogle Scholar
  29. Komoszynski MA (1993) Subcellular and surface localization of the membrane-bound apyrase (ATP-diphosphohydrolase EC 3.6.1.5) from wheat seedlings. Phytochemsitry 34:941–948CrossRefGoogle Scholar
  30. Komoszynski MA, Wojtczak A (1996) Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. Biochim Biophys Acta 1310:233–241PubMedCrossRefGoogle Scholar
  31. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685PubMedCrossRefPubMedCentralGoogle Scholar
  32. Leal DB, Streher CA, Neu TN, Bittencourt FP, Leal CA, da Silva JE, Morsch VM, Schetinger MR (2005) Characterization of NTPDase (NTPDase1; ecto-apyras; ecto-diphosphohydrolase; CD39; EC 3.6.1.) activity in human lymphocytes. Biochim Biophys Act 1721:9–15CrossRefGoogle Scholar
  33. Mans BJ, Gaspa ARMD, Louw AI, Neitz AWH (1998) Purification and characterization of apyrase from the tick, Ornithodoros savignyi. Comp Biochem Physiol B 120:617–624PubMedCrossRefGoogle Scholar
  34. Mant MJ, Parker KR (1981) Two platelet aggregation inhibitors in tsetse (Glossina) saliva with studies of roles of thrombin and citrate in vitro platelet aggregation. Br J Haematol 48:601–608PubMedCrossRefGoogle Scholar
  35. Mita M, Yoshikuni M, Nagahama Y (1998) Ecto-ATP diphosphohydrolase (apyrase) in ovarian follicle cells of starfish Asterina pectinifera. Comp Biochem Physiol B 119:577–583CrossRefGoogle Scholar
  36. Mulero JJ, Yeung G, Nelken ST, Ford JE (1999) CD39-L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates. J Biol Chem 274:20064–20067PubMedCrossRefGoogle Scholar
  37. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedPubMedCentralGoogle Scholar
  38. Okuhata R, Takishima T, Nishimura N, Ueda S, Tsuchiya T, Kanzawa N (2011) Purification and biochemical characterization of a novel ecto-apyrase, mp67, from Mimosa pudica. Plant Physiol 157:464–475PubMedPubMedCentralCrossRefGoogle Scholar
  39. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T et al (2013) Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26:657–702PubMedPubMedCentralCrossRefGoogle Scholar
  40. Pearson JD, Carleton JS, Gordon JL (1980) Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smoothmuscle cells in culture. Biochem J 190:421–429PubMedPubMedCentralGoogle Scholar
  41. Ribeiro JMC, Modi GB, Tesh RB (1989) Salivary apyrase activity of some old world phlebotomine sand flies. Insect Biochem 19:409–412CrossRefGoogle Scholar
  42. Ribeiro JMC, Vaughan JA, Azad AF (1990) Characterization of the salivary apyrase activity of three rodent flea species. Comp Biochem Physiol B 95:215–219PubMedCrossRefGoogle Scholar
  43. Sarkis JJF, Guimares JA, Ribeiro JMC (1986) Salivary apyrase of Rhodnius prolixus: kinetics and purification. Biochem J 233:885–891PubMedPubMedCentralCrossRefGoogle Scholar
  44. Smith I (1969) Acrylamide gel disc electrophoresis. In: Smith I (ed) Electrophoretic techniques. Academic Press, New York, pp 365–515Google Scholar
  45. Smith TM, Hicks-Berger CA, Kim S, Kirley TL (2002) Cloning, expression and characterization of a soluble calcium-activated nucleotidase, a human enzyme belonging to a new family of extracellular nucleotidases. Arch Biochem Biophys 406:105–115PubMedCrossRefGoogle Scholar
  46. Stutzer C, Mans BJ, Gaspar ARM, Neitz AWH, Maritz-Olivier C (2009) Ornithodoros savignyi: Soft tick apyrase belongs to the 50-nucleotidase family. Exp Parasites 122:318–327CrossRefGoogle Scholar
  47. Ubuka T, Masuoka N, Yoshida S, Ishino K (1987) Determination of isoelectric point value of 3-Mercaptopyruvate sulfurtransferase by isoelectric focusing using ribonuclease A-glutathione mixed disulfides as standards. Anal Biochem 167:284–289PubMedCrossRefGoogle Scholar
  48. Valenzuela JG, Chuffe OM, Ribeiro JMC (1996) Apyrase and anti-platelet activities from the salivary glands of the bed bug Cimex lectularius. Insect Biochem Mol Biol 21:557–562CrossRefGoogle Scholar
  49. Valenzuela JG, Charlab R, Galperin MY, Ribeiro JM (1998) Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius. A new type of nucleotide-binding enzyme. J Biol Chem 273:30583–30590PubMedCrossRefGoogle Scholar
  50. Vara F, Serrano R (1981) Purification and characterization of a membrane-bound ATP diphosphohydrolase from Cicer arietinum (chick-pea) roots. Biochem J 197:637–643PubMedPubMedCentralCrossRefGoogle Scholar
  51. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412PubMedGoogle Scholar
  52. Weyrich AS, Zimmerman GA (2004) Platelets: signalling cells in the immune continuum. Trends Immunol 25:489–495PubMedCrossRefGoogle Scholar
  53. Yagi K, Kato N, Shinbo M, Shimba LS, Miura Y (1992) Purification and characterization of adenosine diphosphatase from human umbilical vessels. Chem Pharm Bull 40:2143–2146PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hassan M. M. Masoud
    • 1
    Email author
  • Mohamed S. Helmy
    • 1
  • Doaa A. Darwish
    • 1
  • Mohamed M. Abdel-Monsef
    • 1
  • Mahmoud A. Ibrahim
    • 1
  1. 1.Molecular Biology DepartmentNational Research CentreGizaEgypt

Personalised recommendations