Advertisement

Ticks, fleas and endosymbionts in the ectoparasite fauna of the black-eared opossum Dipelphis aurita in Brazil

  • Marcos Antônio Bezerra-SantosEmail author
  • Bárbara Cristina Félix Nogueira
  • Ricardo Seiti Yamatogi
  • Rafael Antonio Nascimento Ramos
  • Juliana Arena Galhardo
  • Artur Kanadani Campos
Article

Abstract

Ticks and fleas are essential vectors of pathogens that affect humans and animals, and among their hosts, synanthropic animals such as the black-eared opossum, Didelphis aurita, play a role in public health due to their ability to move between urban centers and forested areas in Brazil. This study aimed to assess the ectoparasite fauna of D. aurita, as well as the presence of pathogens and endosymbionts in ticks and fleas. Opossums (n = 58) captured in Tomahawk livetraps were examined for ectoparasites, and their blood sampled for further analysis. Additionally, spleen samples were collected in individuals found dead. Samples were PCR screened for Rickettsia spp., Borrelia spp., Anaplasmataceae, and Babesia spp. Two tick species were morphologically identified as Ixodes loricatus 24/58 (41.4%) and Amblyomma sculptum 1/58 (1.7%). For fleas, Ctenocephalides felis was detected in 60.3% (35/58) of the animals, and Xenopsylla cheopis in 5.2% (3/58). PCR analysis detected Anaplasmataceae DNA in 34% (16/47) of pooled samples of C. felis, and in 66.7% (2/3) pooled samples of X. cheopis. Sequence analysis revealed Wolbachia pipientis symbiont in all positive samples. Tick, blood and spleen samples were all negative for the microorganisms assessed. These findings suggest that these arthropods circulate among wildlife and urban environments, which may implicate in their participation in the cycle of zoonotic pathogens among opossums, humans and companion animals.

Keywords

Opossums Ticks Fleas Vectors Anaplasmataceae 

Notes

Acknowledgements

Authors would like to thank the Professors Dr. Marcelo Bahia Labruna and Dr. Adivaldo Henrique da Fonseca who kindly donated the positive controls for Rickettsia and Borrelia spp., respectively. Secondly, authors acknowledge Professor Gisele Mendes Lessa del Giúdice for providing traps to capture the animals used in our study. Finally, the authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and the Graduate Program in Veterinary Medicine of the Universidade Federal de Viçosa (UFV) for the support provided.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures herein performed were in accordance with the ethical standards of the institution or practice at which the study was conducted, as approved by the Ethics Committee for Animal Experimentation (ECAE) of the Universidade Federal de Viçosa (license number: 80/2018) and by the Biodiversity Information and Authorization System (SISBIO) of the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) under the license number 64930-1.

References

  1. Acosta ICL, Martins TF, Marcili A, Soares HS, Krawczak FS, Vieira FT, Labruna MB (2016) Ticks (Acari: Ixodidae, Argasidae) from humans, domestic and wild animals in the state of Espírito Santo, Brazil, with notes on rickettsial infection. Vet Parasitol Reg Stud Rep 3(4):66–69Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Aragão H, Fonseca F (1961) Notas de Ixodologia VII Lista e Chave Para os Representantes da Fauna Ixodológica Brasileira. Mem Inst Oswaldo Cruz 59(2):115–129PubMedCrossRefGoogle Scholar
  4. Barros-Battesti D, Arzua M (1997) Geographical distribution by biomes of some Marsupial Siphonaptera from the State of Paraná Brazil. Mem Inst Oswaldo Cruz 92(4):485–486CrossRefGoogle Scholar
  5. Barros-Battesti D, Yoshinari NH, Bonoldi VLN, Gomes AC (2000) Parasitism by Ixodes didelphidis and I. loricatus (Acari: Ixodidae) on small wild mammals from an Atlantic Forest in the State of Sao Paulo Brazil. J Med Entomol 37(6):820–827PubMedCrossRefGoogle Scholar
  6. Barros-battesti DM, Arzua M, Bechara GH (2006) Carrapatos de Importância Médico-Veterinária da Região Tropical: Um guia ilustrado para identificação de espécies. USP/Fapesp, São PauloGoogle Scholar
  7. Bicho CL, Ribeiro PB (1998) Chave pictórica para as principais espécies de Siphonaptera de importância médica e veterinária, no Brasil. Rev Bras Parasitol Vet 7(1):47–51Google Scholar
  8. Boostrom A, Beier MS, Macaluso JA, Macaluso KR, Sprenger D, Hayes J, Radulovic S, Azad AF (2002) Geographic association of Rickettsia felis-Infected opossums with human murine typhus, Texas. Emerg Infect Dis 8(6):549–554PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brown DL, Macaluso KR (2016) Rickettsia felis, an emerging flea-borne rickettsiosis. Curr Trop Med Rep 3:27–39PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cabrera AAC, Paula AA, Camacho LAB, Marzochi MCA, Xavier SC, Silva VM, Jansen AM (2003) Canine visceral leishmaniasis in Barra de Guaratiba, Rio de Janeiro, Brazil: assessment of risk factors. Rev Inst Med Trop São Paulo 45(2):79–83PubMedCrossRefGoogle Scholar
  11. Casati S, Sager H, Gern L, Piffaretti JC (2006) Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Ann Agric Environ Med 13:65–70PubMedGoogle Scholar
  12. Cevidanes A, Cataldo S, Vera F, Lillo P, Millan J (2018) Molecular detection of vector-borne pathogens in rural dogs and associated Ctenophalides felis fleas (Siphonaptera: Pulicidae) in Easter Island (Chile). J Med Entomol 55(6):1659–1663PubMedCrossRefGoogle Scholar
  13. Civen R, Ngo V (2008) Murine typhus: an unrecognized suburban vectorborne disease. Clin Infect Dis 46:913–918PubMedCrossRefGoogle Scholar
  14. Costa FB, Costa AP, Moraes-Filho J, Martins TF, Soares HS, Ramirez DG, Dias RA, Labruna MB (2017) Rickettsia amblyommatis infecting ticks and exposure of domestic dogs to Rickettsia spp. in an Amazon-Cerrado transition region of northeastern Brazil. PLoS ONE 12(6):e0179163PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dantas-Torres F, Otranto D (2014) Dogs, cats, parasites, and humans in Brazil: opening the black box. Parasit Vectors 7:22PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dantas-Torres F, Aléssio FM, Siqueira DB, Mauffrey JF, Marvulo MFV, Martins TF, Moraes-Filho J, Camargo MCGO, Dauria SRN, Labruna MB, Silva JCR (2012) Exposure of small mammals to ticks and rickettsiae in Atlantic Forest patches in the metropolitan area of Recife, North-Eastern Brazil. Parasitology 139:83–91PubMedPubMedCentralCrossRefGoogle Scholar
  17. De Sá EFGG, Rodrigues VS, Garcia MV, Zimmermann NP, Ramos VN, Blecha IMZ, Duarte PO, Martins TF, Bordignon MO, Andreotti R (2018) Ticks on Didelphis albiventris from a Cerrado area in the Midwestern Brazil. Syst Appl Acarol 23(5):935–945Google Scholar
  18. Dittmar K, Whiting MF (2004) New Wolbachia Endosymbionts from nearctic and neotropical fleas (Siphonaptera). J Parasitol 90(5):953–957PubMedCrossRefPubMedCentralGoogle Scholar
  19. Durden LA, Hinkle NC (2019) Fleas (Siphonaptera). In: Mullen GR, Durden LA (Eds.) Medical and veterinary entomology (3 Ed). Academic Press, CambridgeGoogle Scholar
  20. Faria BF, Melo FR (2017) Didelphis imperfecta, Didelphimorphia, Didelphidae (Mondolfi & Pérez-Hernández, 1984): a new record in the Brazilian Amazon. Bol Soc Bras Mastozool 79:44–46Google Scholar
  21. Gardner AL (2008) Mammals of South America, Volume I. Marsupials, xenarthrans, shrews, and bats. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  22. Gonzalez IHL, Labruna MB, Chagas CRF, Salgado PAB, Monticelli C, Morais LH, Moraes AA, Antunes TC, Ramos PL, Martins TF (2017) Ticks infesting captive and free-roaming wild animal species at the São Paulo Zoo, São Paulo Brazil. Braz J Vet Parasitol 26(4):496–499CrossRefGoogle Scholar
  23. Gorham CH, Fang QQ, Durnen LA (2003) Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 89(2):283–289PubMedCrossRefGoogle Scholar
  24. Heukelbach J, Bonow I, Witt L, Feidmeier H, Fischer P (2004) High infection rate of Wolbachia endobacteria in the sand flea Tunga penetrans from Brazil. Acta Trop 92:225–230PubMedCrossRefGoogle Scholar
  25. Horta MC, Labruna MB, Pinter A, Linardi PM, Schumaker TTS (2007) Rickettsia infection in five areas of the state of São Paulo, Brazil. Mem Inst Oswaldo Cruz 102(7):793–801PubMedCrossRefGoogle Scholar
  26. Horta MC, Moraes-Filho J, Casagrande RA, Saito TB, Rosa SC, Ogrzewalska M, Matushima ER, Labruna MB (2009) Experimental infection of opossums Didelphis aurita by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense. Vector Borne Zoonotic Dis 9(1):109–117PubMedCrossRefGoogle Scholar
  27. Jansen AM (2002) Marsupiais Didelfídeos: gambás e cuícas. In: Andrade A, Pinto SC, Oliveira RS (eds) Animais de Laboratório: criação e experimentação. FIOCRUZ, Rio de Janeiro, pp 167–173Google Scholar
  28. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874PubMedPubMedCentralCrossRefGoogle Scholar
  29. LePage D, Bordenstein S (2013) Wolbachia: can we save lives with a great pandemic? Trends Parasitol 29(8):385–393PubMedPubMedCentralCrossRefGoogle Scholar
  30. Linardi PM (2006) Os ectoparasitos de marsupiais brasileiros. In: Cáceres NC, Monteiro-Filho ELA (eds) Os marsupiais do Brasil: biologia, ecologia e evolução. Editora da Universidade Federal do Mato Grosso do Sul, Campo Grande, pp 37–52Google Scholar
  31. Linardi PM, Guimarães LR (2000) Sifonápteros do Brasil. Museu de Zoologia USP/Fapesp, São PauloGoogle Scholar
  32. Lopes MG, Muñoz-Leal S, De Lima JTR, Fournier GFSR, Acosta ICL, Martins TF, Ramirez DG, Gennari SM, Labruna MB (2018) Ticks, rickettsial and erlichial infection in small mammals from Atlantic forest remnants in Northeastern Brazil. Int J Parasitol Parasites Wildl 7:380–385PubMedPubMedCentralCrossRefGoogle Scholar
  33. Luz HR, Faccini JLH, Landulfo GA, Sampaio JS, Neto SFC, Famadas KM, Onofrio VC, Barros-Battesti DM (2013) New host records of Ixodes luciae (Acari: Ixodidae) in the State of Pará Brazil. Braz J Vet Parasitol 22(1):152–154CrossRefGoogle Scholar
  34. Luz HR, Neto SFC, Weksler M, Gentile R, Faccini JLH (2018) Ticks parasitizing wild mammals in Atlantic Forest areas in the state of Rio de Janeiro, Brazil. Braz J Vet Parasitol 27(3):409–414Google Scholar
  35. Martin AR, Brown GK, Dunstan RH, Roberts TK (2005) Anaplasma platys: an improved PCR for its detection in dogs. Exp Parasitol 109:176–180PubMedCrossRefGoogle Scholar
  36. Moraes LB, Bossi DEP, Linhares AX (2003) Siphonaptera parasites of wild rodents and marsupials trapped in three mountain ranges of the Atlantic Forest in Southeastern Brazil. Mem Inst Oswaldo Cruz 98(8):1071–1076PubMedCrossRefGoogle Scholar
  37. Morrant DS, Petit S, Schumann R (2010) Floral nectar sugar composition and flowering phenology of the food plants used by the western pygmy possum, Cercartetus concinnus, at Innes National Park, South Australia. Ecol Res 25:579–589CrossRefGoogle Scholar
  38. Muller G, Brum JGW, Langone PQ, Michels GH, Sinkoe AL, Ruas JL, Berne MEA (2005) Didelphis albiventris Lund, 1841, parasitado por Ixodes loricatus Neuman, 1899, e Amblyomma aureolatum (Pallas, 1772) (Acari: Ixodidae) no Rio Grande do Sul. Arq Inst Biol 72:319–324Google Scholar
  39. Oliveira HH, Gomes V, Amorim M, Gazeta GS, Serra-Freire NM, Quinelato IPF, Morelli-Amaral VF, Almeida AB, Carvalho RW, Carvalho AG (2014) Diversidade de ixodida em roedores e marsupiais capturados no Parque Estadual da Pedra Branca, Rio de Janeiro, Brasil. Arq Bras Med Vet Zootec 66(4):1097–1104CrossRefGoogle Scholar
  40. Onder Z, Ciloglu A, Duzlu O, Yildirim A, Okur M, Yetismis G, Inci A (2019) Molecular detection and identification of Wolbachia endosymbiont in fleas (Insecta: Siphonaptera). Folia Microbiol 64(6):789–796.  https://doi.org/10.1007/s12223-019-00692-5 CrossRefGoogle Scholar
  41. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Abdad MY, Stenos J, Bitam I, Fournier PE, Raoult D (2013) Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26:657–702PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pestell AJL, Petit S (2007) Methods and ethical considerations of pitfall trapping for the western pygmy possum Cercartetus concinnus Gould (Marsupialia: Burramyidae), with observations on capture patterns and nest sites. Wildl Res 34:296–305CrossRefGoogle Scholar
  43. Pinto IS, Botelho JR, Costa LP, Leite YLR, Linardi PM (2009) Siphonaptera associated with wild mammals from the Central Atlantic forest biodiversity corridor in Southeastern Brazil. J Med Entomol 46(5):1146–1151CrossRefGoogle Scholar
  44. Ramos RAN, Campbell BE, Whittle A, Lia RP, Montarsi F, Parisi A, Danta-Torres F, Wall R, Otranto D (2015) Occurrence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus (Acari: Ixodidae) in Southern Italy. Ticks Tick-Borne Dis 6(3):234–236PubMedCrossRefGoogle Scholar
  45. Regnery RL, Spruill CL, Plikaytis BD (1991) Genotypic identification of rickettsiae and estimation of interspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173:1576–1589PubMedPubMedCentralCrossRefGoogle Scholar
  46. Rolain J, Franc M, Davoust B, Raoult D (2003) Molecular Detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis, and Wolbachia pipientis in Cat Fleas, France. Emerg Infect Dis 9(3):338–342PubMedCrossRefGoogle Scholar
  47. Salvador CH, Carvalho-Pinto C, Carvalho R, Graipel ME, Simões-Lopes P (2007) Interação parasito-hospedeiro entre ectoparasitos (Ixodida & Siphonaptera) e gambás Didelphis aurita Wied-Neuwied, 1826 (Mammalia: Didelphimorphia), no continente e em ilhas do litoral de Santa Catarina, Sul do Brasil. Biotemas 20(4):81–90Google Scholar
  48. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467PubMedCrossRefGoogle Scholar
  49. Saraiva DG, Fournier GFSR, Martins TF, Leal KPG, Vieira FN, Câmara EMVC, Costa CG, Onofrio VC, Barros-Battesti DM, Guglielmone AA, Labruna MB (2012) Ticks (Acari: Ixodidae) associated with small terrestrial mammals in the state of Minas Gerais, Southeastern Brazil. Exp Appl Acarol 58:159–166PubMedCrossRefGoogle Scholar
  50. Skotarczak B, Wodecka B, Hermanowska-Szpakowicz T (2002) Sensitivity of PCR method for detection of DNA of Borrelia burgdorferi sensu lato in different isolates. Przeglad Epidemiol 56:73–79Google Scholar
  51. Urdapilleta M, Linardi PM, Lareschi M (2019) Fleas associated with sigmodontine rodents and marsupials from the Paranaense Forest in Northeastern Argentina. Acta Trop 193:71–77PubMedCrossRefGoogle Scholar
  52. Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc Lond 267:1277–1285CrossRefGoogle Scholar
  53. Zurita A, Gutièrrez SG, Cutillas C (2016) Infection Rates of Wolbachia sp. and Bartonella sp. in Different Populations of Fleas. Curr Microbiol 73:704–713PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marcos Antônio Bezerra-Santos
    • 1
    Email author
  • Bárbara Cristina Félix Nogueira
    • 1
  • Ricardo Seiti Yamatogi
    • 1
  • Rafael Antonio Nascimento Ramos
    • 2
  • Juliana Arena Galhardo
    • 3
  • Artur Kanadani Campos
    • 1
  1. 1.Department of Veterinary MedicineFederal University of ViçosaViçosaBrazil
  2. 2.Academic Unit of GaranhunsFederal Rural University of PernambucoGaranhunsBrazil
  3. 3.Faculty of Veterinary Medicine and Animal ScienceFederal University of Mato Grosso Do SulCampo GrandeBrazil

Personalised recommendations