Experimental and Applied Acarology

, Volume 79, Issue 2, pp 169–186 | Cite as

Effects of Tropilaelaps mercedesae on midgut bacterial diversity of Apis mellifera

  • Shilong Ma
  • Yang Yang
  • Cameron J. Jack
  • Qingyun Diao
  • Zhongmin Fu
  • Pingli DaiEmail author


Tropilaelaps mercedesae is an ectoparasite of Apis mellifera in Asia and is considered a major threat to honey bee health. Herein, we used the Illumina MiSeq platform 16S rDNA Amplicon Sequencing targeting the V3–V4 regions and analysed the effects on the midgut bacterial communities of honey bees infested with T. mercedesae. The overall bacterial community in honey bees infested with T. mercedesae were observed at different developmental stages. Honey bee core intestinal bacterial genera such as Gilliamella, Lactobacillus and Frischella were detected. Tropilaelapsmercedesae infestation changed the bacterial communities in the midgut of A. mellifera. Tropilaelapsmercedesae-infested pupae had greatly increased relative abundances of Micrococcus and Sphingomonas, whereas T. mercedesae-infested 15-day-old workers had significantly reduced relative abundance of non-core microbes: Corynebacterium, Sphingomonas, Acinetobacter and Enhydrobacter compared to T. mercedesae-infested newly emerged bees. The bacterial community was significantly changed at the various T. mercedesae-infested developmental stages of A. mellifera. Tropilaelapsmercedesae infestation also changed the non-core bacterial community from larvae to newly emerged honey bees. Bacterial communities were significantly different between T. mercedesa-infested and non-mite-infested 15-day-old workers. Lactobacillus was dominant in T. mercedesae-infested 15-day-old workers compared to non-mite-infested 15-day-old workers.


Apis mellifera Tropilaelaps mercedesae Lactobacillus Developmental stage 



We thank Pinhong Wang, Guirong Li and Yujuan Qiu (Institute of Apicultural Research, China Academy of Agricultural Sciences) for beekeeping. This work was supported by the Beijing Natural Science Foundation (No. 6162026), the Central Public-interest Scientific Institution Basal Research Fund (IAR-CPSIBRF-2017-1) and the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2017-IAR).

Supplementary material

10493_2019_424_MOESM1_ESM.pdf (581 kb)
Supplementary material 1 (PDF 580 kb)


  1. Anderson DL, Morgan MJ (2007) Genetic and morphological variation of bee parasitic Tropilaelaps mites (Acari: Laelapidae): new and re-defined species. Exp Appl Acarol 43:1–24CrossRefPubMedGoogle Scholar
  2. Anderson KE, Sheehan TH, Eckholm BJ, Mott BM, DeGrandi-Hoffman G (2011) An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insect Soc 58:431–444CrossRefGoogle Scholar
  3. Anderson KE, Sheehan TH, Mott BM, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harr V (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE 8:e83125CrossRefPubMedPubMedCentralGoogle Scholar
  4. Butler È, Alsterfjord M, Olofsson TC, Karlsson C, Malmström J, Olofsson AV (2013) Proteins of novel lactic acid bacteria from Apis mellifera mellifera: an insight into the production of known extra-cellular proteins during microbial stress. BMC Microbiol 13:235CrossRefPubMedPubMedCentralGoogle Scholar
  5. Camphor ESW, Hashmi AA, Ritter W, Bowen ID (2005) Seasonal changes in mite (Tropilaelaps clareae) and honeybee (Apis mellifera) populations in apistan treated and untreated colonies. Apiacta 40:34–44Google Scholar
  6. Chandler D, Sunderland KD, Ball BV, Davidson G (2001) Prospective biological control agents of Varroa destructor n. sp. an important pest of the European honeybee, Apis mellifera. Biocontrol Sci Technol 11:429–448CrossRefGoogle Scholar
  7. Crotti E, Sansonno L, Prosdocimi EM, Vacchini V, Hamdi C, Cherif A, Gonella E, Marzorati M, Balloi A (2013) Microbial symbionts of honeybees: a promising tool to improve honeybee health. N Biotechnol 30:716–722CrossRefPubMedGoogle Scholar
  8. Dainat B, Ken T, Berthoud H, Neumann P (2009) The ectoparasitic mite Tropilaelaps mercedesae (Acari, Laelapidae) as a vector of honeybee viruses. Insect Soc 56:40–43CrossRefGoogle Scholar
  9. de Guzman LI, Williams GR, Khongphinitbunjong K, Chantawannakul P (2017) Ecology, life history, and management of Tropilaelaps mites. J Econ Entomol 110:319CrossRefPubMedGoogle Scholar
  10. Disayathanoowat T, Young JP, Helgason T, Chantawannakul P (2012) T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in Thailand. FEMS Microbiol Ecol 79(2):273–281CrossRefPubMedGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  12. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ellegaard KM, Engel P (2015) Beyond 16S rRNA community profiling: intraspecies diversity in the gut microbiota. Front Microbiol 7:1475Google Scholar
  14. Ellegaard KM, Tamarit D, Javelind E, Olofsson TC, Andersson SGE, Vásquez A (2016) Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genom 16:284CrossRefGoogle Scholar
  15. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735CrossRefPubMedGoogle Scholar
  16. Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19:614–620CrossRefPubMedGoogle Scholar
  17. Fei DL, Zhang HC, Diao QY, Jiang LL, Wang Q, Zhong Y, Fan ZB, Ma MX (2015) Codon optimization, expression in Escherichia coli, and immunogenicity of recombinant Chinese Sacbrood Virus (CSBV) structural proteins VP1, VP2, and VP3. PLoS ONE 10:e0128486CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821CrossRefGoogle Scholar
  19. Gerth M, Hurst GDD (2017) Short reads from honey bee (Apis sp.) sequencing projects reflect microbial associate diversity. Peer J 5:e3529CrossRefPubMedGoogle Scholar
  20. Guo J, Jie W, Chen YP, Evans JD, Dai RG, Luo WH, Li JL (2015) Characterization of gut bacteria at different developmental stages of Asian honey bees, Apis cerana. J Invertebr Pathol 127:110–114CrossRefPubMedGoogle Scholar
  21. Haas BJ, Dirk G, Ashlee ME, Mike F, Doyle VW, Georgia G, Dawn C, Diana T, Sarah KH, Erica S, Barbara M, Todd ZD, Joseph FP, Rob K, Bruce WB (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hroncova Z, Havlik J, Killer J, Doskocil I, Tyl J, Kamler M, Titera D, Hakl J, Mrazek J, Bunesova V, Rada V (2015) Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location. PLoS ONE 10:e0118707CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hubert J, Erban T, Kamler M, Kopecky J, Nesvorna M, Hejdankova S, Titera D, Tyl J, Zurek L (2015) Bacteria detected in the honeybee parasitic mite Varroa destructor collected from beehive winter debris. J Appl Microbiol 119:640–654CrossRefPubMedGoogle Scholar
  24. Jia HR, Geng LL, Li YH, Wang Q, Diao QY, Zhou T, Dai PL (2016) The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae). Sci Rep 6:24664CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jia HR, Dai PL, Geng LL, Jack CJ, Li YH, Wu YY, Diao QY, Ellis JD (2017) No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae). Sci Rep 7:41688CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kanga LHB, Jones WA, James RR (2003) Field trials using the fungal pathogen, Metarhizium anisopliae (Deuteromycetes: Hyphomycetes) to control the ectoparasitic mite, Varroa destructor (Acari: Varroidae) in Honey Bee, Apis mellifera (Hymenoptera: Apidae) colonies. J Econ Entomol 96:1091–1099CrossRefPubMedGoogle Scholar
  27. Kanga LHB, Jones WA, Gracia C (2006) Efficacy of strips coated with Metarhizium anisopliae for control of Varroa destructor (Acari: Varroidae) in honey bee colonies in Texas and Florida. Exp Appl Acarol 40:249–258CrossRefPubMedGoogle Scholar
  28. Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, Robinson GE (2015) Caste-Specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE 10:e0123911CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kešnerová L, Moritz R, Engel P (2015) Bartonella apis sp. nov. a honey bee gut symbiont of the class Alphaproteobacteria. Int J Syst Evol Micr 66:414–421CrossRefGoogle Scholar
  30. Khongphinitbunjong K, Guzman LID, Burgett MD, Rinderer TE, Chantawannakul P (2012) Behavioral responses underpinning resistance and susceptibility of honeybees to Tropilaelaps mercedesae. Apidologie 43:590–599CrossRefGoogle Scholar
  31. Khongphinitbunjong K, Neumann P, Chantawannakul P, Williams GR (2016) The ectoparasitic mite Tropilaelaps mercedesae reduces western honey bee, Apis mellifera, longevity and emergence weight, and promotes deformed wing virus infections. Invertebr Pathol 137:38–42CrossRefGoogle Scholar
  32. Killer J, DubnáS Sedláček I, Švec P (2014) Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 64:152–157CrossRefPubMedGoogle Scholar
  33. Koch H, Schmid-Hempel P (2011) Bacterial communities in central European bumblebees: low diversity and high specificity. Microbial Ecol 62:121–133CrossRefGoogle Scholar
  34. Kumar R, Kumar NR, Bhalla OP (1993) Studies on the development biology of Tropilaelaps clareae Delfinado and Baker (Acarina: Laelapidae) vis a vis the threshold stage in the life cycle of Apis mellifera Linn. (Hymenoptera: Apidae). Exp Appl Acarol 17:621–625CrossRefGoogle Scholar
  35. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee FJ, Rusch DB, Stewart FJ, Newton IL (2015) Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ Microbiol 17:796–815CrossRefPubMedGoogle Scholar
  37. Ludvigsen J, Rangberg A, Avershina E, Sekelja M, Kreibich C, Amdam G, Rudi K (2015) Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microbes Environ 30:235–244CrossRefPubMedPubMedCentralGoogle Scholar
  38. Luo QH, Zhou T, Dai PL, Song HL, Wu YY, Wang Q (2011a) Prevalence, intensity and associated factor analysis of Tropilaelaps mercedesae infesting Apis mellifera in China. Exp Appl Acarol 55:135–146CrossRefPubMedGoogle Scholar
  39. Luo Q, Zhou T, Wang Q, Dai PL, Wu YY, Song HL (2011b) Identification of tropilaelaps mites (Acari, Laelapidae) infesting Apis mellifera in China. Apidologie 42:485–498CrossRefGoogle Scholar
  40. Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272CrossRefPubMedGoogle Scholar
  41. Moran NA, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190CrossRefPubMedGoogle Scholar
  42. Olofsson TC, Alsterfjord M, Nilson B, Butler E, Va’squez A (2014) Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 64:3109–3119CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pakwan C, Kaltenpoth M, Weiss B, Chantawannakul P, Jun G, Disayathanoowat T (2017) Bacterial communities associated with the ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae of honey bees (Apis mellifera). FEMS Microbiol. CrossRefGoogle Scholar
  44. Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol 80:7378–7387CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prakaimuk S, Li Y, Kanokporn S, Chen Z, Chantawannakul P (2015) Midgut bacterial communities in the giant Asian honeybee (Apis dorsata) across four developmental stages: a comparative study. Insect Sci 8:3–9Google Scholar
  46. Pusceddu M (2016) Social immunity in honeybee: behavioral, chemical and microbiological aspects. Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Sassari, Viale Italia, SassariGoogle Scholar
  47. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CrossRefPubMedGoogle Scholar
  48. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:96–119CrossRefGoogle Scholar
  49. Sandionigi A, Vicario S, Prosdocimi EM, Galimberti A, Ferri E, Bruno A, Balech B, Mezzasalma V, Casiafhi M (2015) Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: Introducing ‘phyloh’ as a novel phylogenetic diversity analysis tool. Mol Ecol Resour 15:697–710CrossRefPubMedGoogle Scholar
  50. Saraithong P, Li Y, Saenphet K, Chen Z, Chantawannakul P (2017) Midgut bacterial communities in the giant Asian honeybee (Apis dorsata) across 4 developmental stages: a comparative study. Insect Sci 24:81–92CrossRefPubMedGoogle Scholar
  51. Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8:889–895CrossRefPubMedPubMedCentralGoogle Scholar
  52. Snowdon JA, Cliver DO (1996) Microorganisms in honey. Int J Food Microbiol 31:1–26CrossRefPubMedGoogle Scholar
  53. Vanbergen AJ (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259CrossRefGoogle Scholar
  54. Vanengelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Invertebr Pathol 103:S80–S95CrossRefGoogle Scholar
  55. Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE 7:e33188CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  57. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301CrossRefPubMedGoogle Scholar
  58. Yun JH, Jung MJ, Kim PS, Bae JW (2018) Social status shapes the bacterial and fungal gut communities of the honey bee. Sci Rep 8:2019CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhang J, Zhang Y, Han R (2016) The high-throughput production of dsRNA against sacbrood virus for use in the honey bee Apis cerana (Hymenoptera: apidae). Virus Genes 52:698–705CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural ResearchChinese Academy of Agricultural SciencesBeijingChina
  2. 2.Bee AcademyFujian Agriculture and Forestry UniversityFuzhouChina
  3. 3.Honey Bee Research and Extension Laboratory, Entomology and Nematology DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations