Experimental and Applied Acarology

, Volume 78, Issue 3, pp 403–420 | Cite as

A relapsing fever Borrelia and spotted fever Rickettsia in ticks from an Andean valley, central Chile

  • Sebastián Muñoz-LealEmail author
  • Arlei Marcili
  • Danny Fuentes-Castillo
  • Mauricio Ayala
  • Marcelo B. Labruna


In humans, emerging infectious diseases are mostly zoonoses with ticks playing an important role as vectors. Tick-borne relapsing fever Borrelia and spotted fever Rickettsia occur in endemic foci along tropical and subtropical regions of the globe. However, both are widely neglected etiologic agents. In this study, we performed molecular analyses in order to assess the presence of Borrelia and Rickettsia DNA in ticks infesting small-mammals within a National Reserve located in the Andes Mountains, central Chile. While hard ticks were negative for the presence of both agents, sequences of four rickettsial (gltA, htrA, ompA, ompB) and two borrelial (16S rRNA and flaB) genes were obtained from larvae of an Ornithodoros sp. morphologically related with Ornithodoros atacamensis. Phylogenetic analyses indicated that the detected Borrelia and Rickettsia spp. belong to the relapsing fever and spotted fever groups, respectively. Moreover, the agents formed monophyletic clades with Rickettsia amblyommatis and “Candidatus Borrelia johnsonii.” As positive ticks parasitize rodents within a highly visited National Reserve where outdoor activities are of common practice, the risk for human parasitism should not be discarded.


Tick-borne diseases Ornithodoros Candidatus Borrelia johnsonii” Rickettsia amblyommatis Chile 



We thank Hugo Durán for his valuable help during fieldwork and CONAF personnel for logistic support within the RCNR. Fieldwork and the collection of samples were funded by the “Fondo Científico del Alto Cachapoal versión 7 – Pacific Hydro Chile”. Laboratory work was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). SML was funded by FAPESP (Grant #2018/02521-1). DFC was funded by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT, Grant BCH #72170436).

Author contributions

SML and MBL conceived the study. SML, DFC, and MA made vertebrate capture and tick collection in the field. SML identified ticks, performed laboratory work, and drafted the manuscript. SML and AM performed phylogenetic analyses. All authors contributed to reviewing the manuscript, read, and approved the final version.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Animal captures, handling, and the collection of biological samples have been approved by the “Corporación Nacional Forestal” (CONAF) and by permit 417/2018 given by the “Servicio Agrícola y Ganadero” (SAG), Chile. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Supplementary material

10493_2019_389_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)


  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefGoogle Scholar
  2. Ataliba AC, Resende JS, Yoshinari N, Labruna MB (2007) Isolation and molecular characterization of a Brazilian strain of Borrelia anserina, the agent of fowl spirochaetosis. Res Vet Sci 83:145–149. CrossRefGoogle Scholar
  3. Barbour A, Schwan TG (2018) Borrelia. In: Wang G, Schwartz I (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley, in association with Bergey’s Manual Trust, New York. Google Scholar
  4. Carpenter J, Marion CJ (2017) Exotic animal formulary, 5th edn. Elsevier, St. Louis, p 776Google Scholar
  5. Chikeka I, Dumler JS (2015) Neglected bacterial zoonoses. Clin Microbiol Infect 21:404–415. CrossRefGoogle Scholar
  6. Cutler SJ (2015) Relapsing Fever borreliae, a global review. Clin Lab Med 35:847–865. CrossRefGoogle Scholar
  7. Cutler SJ, Ruzic-Sabljic E, Potkonjak A (2017) Emerging borreliae—expanding beyond Lyme borreliosis. Mol Cell Probes 31:22–27. CrossRefGoogle Scholar
  8. Davis GE (1952) Observations on the biology of the argasid tick, Ornithodoros brasiliensis Aragão, 1923, with the recovery of a spirochete, Borrelia brasiliensis, n. sp. J Parasitol 38:473–476CrossRefGoogle Scholar
  9. Dworkin MS, Schwan TG, Anderson DE, Borchardt SM (2008) Tick-borne relapsing fever. Infect Dis Clin North Am 22:449–468. CrossRefGoogle Scholar
  10. Estrada-Peña A, Álvarez-Jarreta J, Cabezas-Cruz A (2018) Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia. Infect Genet Evol 66:308–318. CrossRefGoogle Scholar
  11. Faccini-Martínez Á, González Tous M, Mattar Velilla S (2018) Fiebre recurrente transmitida por garrapatas: ¿otra etiología subdiagnosticada en Latinoamérica tropical? Rev MVZ Córdoba 23:6399. CrossRefGoogle Scholar
  12. Guglielmone AA, Robbins RG (2018) Hard Ticks (Acari: Ixodida: Ixodidae) PARASITIZING humans. Springer International Publishing, ChamCrossRefGoogle Scholar
  13. Guglielmone AA, Acuña DG, Autino AG et al (2005) Ixodes sigelos Keirans, Clifford & Corwin, 1976 (Acari : Ixodidae) in Argentina and southern Chile. Syst Appl Acarol 1976:37–40Google Scholar
  14. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate Large phylogenies by Maximum Likelihood. Syst Biol 52:696–704. CrossRefGoogle Scholar
  15. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. CrossRefGoogle Scholar
  16. Izzard L, Chung M, Dunning Hotopp J et al (2018) Isolation of a divergent strain of Rickettsia japonica from Dew’s Australian bat Argasid ticks (Argas (Carios) dewae) in Victoria, Australia. Ticks Tick Borne Dis 9:1484–1488. CrossRefGoogle Scholar
  17. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14. CrossRefGoogle Scholar
  18. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. CrossRefGoogle Scholar
  19. Keirans JE, Clifford CM, Corwin D (1976) Ixodes sigelos, n. sp. (Acarina: Ixodidae), a parasite of rodents in Chile, with a method for preparing ticks for examination by scanning electron microscopy. Acarologia 18:217–225Google Scholar
  20. Kingry LC, Anacker M, Pritt B et al (2018) Surveillance for and discovery of Borrelia species in US patients suspected of tickborne illness. Clin Infect Dis 66:1864–1871. CrossRefGoogle Scholar
  21. Labruna MB (2009) Ecology of Rickettsia in South America. Ann N Y Acad Sci 1166:156–166. CrossRefGoogle Scholar
  22. Labruna MB, McBride JW, Bouyer DH et al (2004a) Molecular evidence for a spotted fever group Rickettsia species in the tick Amblyomma longirostre in Brazil. J Med Entomol 41:533–537. CrossRefGoogle Scholar
  23. Labruna MB, Whitworth T, Horta MC, Bouyer DH, McBride JW, Pinter A et al (2004b) Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of São Paulo, Brazil, where Brazilian spotted fever is endemic. J Clin Microbiol 42(1):90–98. CrossRefGoogle Scholar
  24. Li M, Tromp J, Zhang L (1996) On the nearest neighbour interchange distance between evolutionary trees. J Theor Biol 182:463–467. CrossRefGoogle Scholar
  25. Maia MO, Koppe VC, Muñoz-Leal S et al (2018) Detection of Rickettsia spp. in ticks associated to wild mammals in Northeastern Brazil, with notes on an undetermined Ornithodoros sp. collected from marsupials. Exp Appl Acarol 76:523–535. CrossRefGoogle Scholar
  26. Mangold AJ, Bargues MD, Mas-Coma S (1998) Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitol Res 84:478–484CrossRefGoogle Scholar
  27. Marinkelle CJ, Grose ES (1968) Species of Borrelia from a Colombian Bat (Natalus tumidirostris). Nature 218:487CrossRefGoogle Scholar
  28. Millán J, Peña E (2000) Plan de manejo Reserva Nacional Río de Los Cipreses periodo 2000–2004. Ministerio de Agricultura - CONAF, SantiagoGoogle Scholar
  29. Muñoz-Leal S, Venzal JM, González-Acuña D et al (2016) A new species of Ornithodoros (Acari: Argasidae) from desert areas of northern Chile. Ticks Tick Borne Dis 7:901–910. CrossRefGoogle Scholar
  30. Muñoz-Leal S, Faccini-Martínez ÁA, Costa FB et al (2018) Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick Borne Dis. Google Scholar
  31. Muñoz-Leal S, Lopes MG, Marcili A et al (2019) Anaplasmataceae, Borrelia and Hepatozoon agents in ticks (Acari: Argasidae, Ixodidae) from Chile. Acta Trop 192:91–103. CrossRefGoogle Scholar
  32. Nava S, Venzal JM, González-Acuña D et al (2017) Ticks of the Southern Cone of America: diagnosis, distribution and hosts with taxonomy, ecology and sanitary importance. Elsevier, Academic Press, New YorkGoogle Scholar
  33. Nicholas KB, Nicholas HB, Deerfield D (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4:14Google Scholar
  34. Nováková M, Costa FB, Krause F et al (2016) Rickettsia vini n. sp. (Rickettsiaceae) infecting the tick Ixodes arboricola (Acari: Ixodidae). Parasit Vectors 9:1–8. CrossRefGoogle Scholar
  35. Ogrzewalska M, Pacheco RC, Uezu A et al (2008) Ticks (Acari: Ixodidae) infesting wild birds in an Atlantic forest area in the state of São Paulo, Brazil, with isolation of Rickettsia from the tick Amblyomma longirostre. J Med Entomol 45:770–774. CrossRefGoogle Scholar
  36. Parola P, Ryelandt J, Mangold AJ et al (2011) Relapsing fever Borrelia in Ornithodoros ticks from Bolivia. Ann Trop Med Parasitol 105:407–411. CrossRefGoogle Scholar
  37. Parola P, Paddock CD, Socolovschi C et al (2013) Update on tick-borne Rickettsioses around the world: a Geographic approach. Clin Microbiol Rev 26:657–702. CrossRefGoogle Scholar
  38. Pritt BS, Respicio-Kingry LB, Sloan LM et al (2016) Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. Int J Syst Evol Microbiol 66:4878–4880. CrossRefGoogle Scholar
  39. Raoult D, Fournier PE, Eremeeva M et al (2005) Naming of rickettsiae and rickettsial diseases. Ann N Y Acad Sci 1063:1–12. CrossRefGoogle Scholar
  40. Ras NM, Lascola B, Postic D, Cutler SJ, Rodhain F, Baranton G, Raoult D (1996) Phylogenesis of relapsing fever Borrelia spp. Int J Syst Bacteriol 46(4):859–865. CrossRefGoogle Scholar
  41. Regnery RL, Spruill CL, Plikaytis BD (1991) Genotypic identification of Rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173(5):1576–1589CrossRefGoogle Scholar
  42. Roux V, Raoult D (2000) Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int J Syst Evol Microbiol 50:1449–1455CrossRefGoogle Scholar
  43. Roux V, Fournier PE, Raoult D (1996) Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J Clin Microbiol 34(9):2058–2065Google Scholar
  44. Sanchez JP, Nava S, Lareschi M et al (2010) Host range and geographical distribution of Ixodes sigelos (Acari: Ixodidae). Exp Appl Acarol 52:199–205. CrossRefGoogle Scholar
  45. Sangioni LA, Horta MC, Vianna MCB et al (2005) Rickettsial infection in animals and Brazilian Spotted Fever endemicity. Emerg Infect Dis 11:265–270. CrossRefGoogle Scholar
  46. Schwan TG, Raffel SJ, Schrumpf ME, Policastro PF, Rawlings JA, Lane RS et al (2005) Phylogenetic analysis of the spirochetes Borrelia parkeri and Borrelia turicatae and the potential for Tick-borne Relapsing Fever in Florida. J Clin Microbiol 43(8):3851–3859. CrossRefGoogle Scholar
  47. Schwan TG, Raffel SJ, Schrumpf ME et al (2009) Characterization of a novel relapsing fever spirochete in the midgut, coxal fluid, and salivary glands of the bat tick Carios kelleyi. Vector Borne Zoonot Dis 9:643–647. CrossRefGoogle Scholar
  48. Sebastian PS, Bottero MNS, Carvalho L et al (2016) Borrelia burgdorferi sensu lato in Ixodes cf. neuquenensis and Ixodes sigelos ticks from the Patagonian region of Argentina. Acta Trop 162:218–221. CrossRefGoogle Scholar
  49. Silva-Goytia R, Elizondo A (1952) Estudios sobre Fiebre Manchada en México. II. Parásitos hematófagos encontrados naturalmente infectados. Rev Med México 32:278–282Google Scholar
  50. Sonenshine DE, Roe RM (2014) Biology of ticks. Volume I. Oxford University Press, OxfordGoogle Scholar
  51. Stromdahl EY, Williamson PC, Kollars TMJ, Evans SR, Barry RK, Vince MA, Dobbs NA (2003) DNA evidence of Borrelia lonestari in Amblyomma americanum (Acari: Ixodidae) removed from humans. J Clin Microbiol 41(12):5557–5562. CrossRefGoogle Scholar
  52. Swofford LD (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, SunderlandGoogle Scholar
  53. Tahir D, Socolovschi C, Marié J-L et al (2016) New Rickettsia species in soft ticks Ornithodoros hasei collected from bats in French Guiana. Ticks Tick Borne Dis 7(6):1089–1096. CrossRefGoogle Scholar
  54. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. CrossRefGoogle Scholar
  55. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. CrossRefGoogle Scholar
  56. Webb L, Carl M, Malloy DC, Dasch GA (1990) Detection of murine typhus infection in fleas by using the polymerase chain reaction. J Clin Microbiol 28(3):530–534Google Scholar
  57. Weinert L, Werren JH, Aebi A et al (2009) Evolution and diversity of Rickettsia bacteria. BMC Biol 7:6. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloBrazil
  2. 2.Mestrado em Medicina e Bem estar animalUniversidade Santo Amaro, São PauloSão PauloBrazil
  3. 3.Departamento de Patologia Experimental e Comparada, Faculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloBrazil
  4. 4.Villa Parque Bicentenario, TalcaChile

Personalised recommendations