Advertisement

Experimental and Applied Acarology

, Volume 78, Issue 3, pp 373–401 | Cite as

Integrative taxonomy of Abacarus mites (Eriophyidae) associated with hybrid sugarcane plants, including description of a new species

  • Mércia Elias Duarte
  • Renata Santos de Mendonça
  • Anna Skoracka
  • Edmilson Santos Silva
  • Denise NaviaEmail author
Article

Abstract

Phytophagous mites belonging to the Eriophyoidea are extremely diverse and highly host-specific. Their accurate morphological identification is hampered by their reduced size and simplified bodies and by the existence of cryptic species complexes. Previous studies have demonstrated the urgency of applying multisource methods to accurate taxonomic identification of eriophyoid mites, especially species belonging to the genus Abacarus. This genus comprises 65 species, of which 37 are associated with grasses and four with sugarcane Saccharum (Poaceae). Recently, Abacarus specimens very similar to Abacarus sacchari were collected from the sugarcane crop in Brazil; however, their taxonomic placement was uncertain. In this study, we used an integrative approach to determine whether A. aff. sacchari specimens belong to A. sacchari or constitute a cryptic species. Morphological data were combined with molecular phylogeny based on the nucleotide sequences of three markers, one mitochondrial (COI) and two nuclear (D2 region of 28S and ITS). Morphological differences were observed between A. aff. sacchari, A. sacchari and A. doctus. The phylogenetic relationships among these three taxa and the genetic distances separating them revealed an interspecific divergence. The results of the morphological and molecular methods were congruent and supported the existence of a new species: Abacarus neosacchari n. sp. Duarte and Navia, herein described. This species belongs to the Abacarus cryptic species complex associated with sugarcane in the Americas. The results of this study, presenting the occurrence of multiple Abacarus species associated with sugarcane, contribute to the knowledge on plants and mites diversity by adding up one more clue highlighting that plant hybridization can be an important mechanism contributing to the speciation of plant-feeding arthropods.

Keywords

Phytophagous mite Eriophyoidea Molecular phylogeny Multivariate morphometry Saccharum 

Notes

Acknowledgements

We sincerely thank Dr. Elisângela Gomes Fidelis, Embrapa Roraima, Roraima; Dra. Ranyse Barbosa Querino da Silva, Embrapa Meio Norte, Piauí; Dr. Elio Cesar Guzzo, Embrapa Tabuleiros Costeiros, Alagoas, Brazil; Mr. Felipe Alfredo Cerón Martí, Ingênio Central Izalco, Sonsonate, El Salvador; Dr. Hugo Aguilar Piedra, Universidad de Costa Rica, Costa Rica, for their help with sampling. To ‘Coordenadoria de Aperfeiçoamento de Pessoal do Ensino Superior’ (CAPES) for the financial support to R.S. Mendonça (PNPD/Agronomia Proc. No. 88882.305808/2018-1), to Fundação de Amparo à Pesquisa do Estado de Alagoas (FAPEAL) and to Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) for the fellowship to the first author, to ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)’, Brazil, for granting the fellowship to the first and last authors.

Supplementary material

10493_2019_388_MOESM1_ESM.docx (44 kb)
Supplementary material 1 (DOCX 44 kb)

References

  1. Amrine JW Jr, Manson DCM (1996) Preparation, mounting and descriptive study of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World Crop Pests, vol 6. Elsevier, Amsterdam, pp 383–396Google Scholar
  2. Amrine JW Jr, Stasny TA (1994) Catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. Indira Publishing House, MichiganGoogle Scholar
  3. Amrine JW Jr, Stasny TAH, Flechtmann CHW (2003) Revised Keys to the World Genera of the Eriophyoidea (Acari: Prostigmata). Indira Publishing House, MichiganGoogle Scholar
  4. Arribas P, Andújar C, Sá Nchez-Fernández D, Abellán P, Millán A (2013) Integrative taxonomy and conservation of cryptic beetles in the Mediterranean region (Hydrophilidae). Zool Scr 42:182–200Google Scholar
  5. Ben-David T, Melamed S, Gerson U, Morin S (2007) ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Exp Appl Acarol 41:169–181Google Scholar
  6. Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol 47:773–815Google Scholar
  7. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155.  https://doi.org/10.1016/j.tree.2006.11.004 Google Scholar
  8. Bueno-Silva M, Boeger WA, Pie MR (2011) Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae). Int J Parasitol 41:657–667Google Scholar
  9. Bull TA, Glasziou KT (1979) Sugarcane. In: Lovett JV, Lazenby A (eds) Australian field crops: tropical cereals, oilseeds, grain legumes and other crops, vol 2. Angus and Robertson Publishers, Sydney, pp 95–113Google Scholar
  10. Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237–251Google Scholar
  11. Carew M, Schiffer M, Umina P, Weeks A, Hoffmann A (2009) Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull Entomol Res 99:479–486Google Scholar
  12. Chetverikov PE (2014) Comparative confocal microscopy of internal genitalia of phytoptine mites (Eriophyoidea, Phytoptidae): new generic diagnoses reflecting host–plant associations. Exp Appl Acarol 62:129–160.  https://doi.org/10.1007/s10493-013-9734-2 Google Scholar
  13. Chetverikov PE, Craemer C (2015) Gnathosomal interlocking apparatus and remarks on functional morphologyof frontal lobes of eriophyoid mites (Acariformes, Eriophyoidea). Exp Appl Acarol 66:187–202Google Scholar
  14. Chetverikov PE, Petanović RU (2016) Longest endoparasitic eriophyoid mite (Acari, Eriophyoidea): description of Novophytoptus longissimus n. sp. and remarks on size limits in eriophyoids. Syst Appl Acarol 21(11):1547–1564Google Scholar
  15. Chetverikov PE, Craemer C, Vishnyakov AE, Sukhareva SI (2014) CLSM anatomy of internal genitalia of Mackiella reclinata sp nov and systematic remarks on eriophyoid mites from the tribe Mackiellini Keifer, 1946 (Eriophyoidea, Phytoptidae). Zootaxa 3860(3):261–279Google Scholar
  16. Chetverikov PE, Cvrković T, Makunin A, Sukhareva S, Vidović B, Petanović R (2015) Basal divergence of Eriophyoidea (Acariformes, Eupodina) inferred from combined partial COI and 28S gene sequences and CLSM genital anatomy. Exp Appl Acarol 67(2):219–245.  https://doi.org/10.1007/s10493-015-9945-9 Google Scholar
  17. Cvrković T, Chetverikov P, Vidović B, Petanović R (2016) Cryptic speciation within Phytoptus avellanae s. l. Eriophyoidea: Phytoptidae) revealed by molecular data and observations on molting Tegonotus-like nymphs. Exp Appl Acarol 68(1):83–96Google Scholar
  18. Daniels SJ, Roach BT (1987) Taxonomy and Evolution. In: Heinz DJ (ed) Sugarcane Improvement through Breeding, vol 11. Elsevier, Amsterdam, pp 7–84Google Scholar
  19. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772Google Scholar
  20. de Lillo E, Craemer C, Amrine JW Jr, Nuzzaci G (2010) Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp Appl Acarol 51:283–307Google Scholar
  21. de Mendonça RS, Navia D, Diniz IR, Auger P, Navajas M (2011) A critical review on some closely related species of Tetranychus sensu strict (Acari: Tetranychidae) in the public DNA sequences database. Exp Appl Acarol 55(1):1–23Google Scholar
  22. Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989Google Scholar
  23. Duarte ME (2016) Ácaros fitófagos da suprfamília Eriophyoidea: taxonomia integrativa para ácaros do gênero Abacarus Keifer, 1944 associados à cana-de-açúcar no Brasil e na América Central e descrição de novos táxons associados a plantas nativas no nordeste do Brasil. Thesis, Federal University of AlagoasGoogle Scholar
  24. Evans LM, Gerard JA, Stephen MS, Scott AW, Thomas GW (2008) Tree hybridization and genotypic variation drive cryptic speciation of a specialist mite herbivore. Evolution 62(12):3027–3040Google Scholar
  25. Fauconnier R (1993) The tropical agriculturist: sugar cane. Macmillan Press, LondonGoogle Scholar
  26. Feder JL, Chilcote CA, Bush GL (1988) Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella. Nature 336:61–64Google Scholar
  27. Floate KD, Whitham TG (1993) The “hybrid bridge” hypothesis: host shifting via plant hybrid swarms. Am Nat 141(4):651–662Google Scholar
  28. Frost WE, Ridland PM (1996) Grasses. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites-their biology, natural enemies and control World crop pests, vol 6. Elsevier, Amsterdam, pp 619–629Google Scholar
  29. Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Res 38:14–18Google Scholar
  30. Goulet BE, Roda F, Hopkins R (2017) Hybridization in plants: old ideas, new techniques. Plant Physiol 173:65–78Google Scholar
  31. Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704Google Scholar
  32. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of Phyml 3. 0. Syst Biol 59(3):307–321Google Scholar
  33. Guzzo EC, Negrisoli Júnior AS, Martí FAC, Lemus MA, Benítez D, Navia D (2014) First report of the eriophyoid mite Abacarus doctus (Prostigmata: Eriophyidae) infesting sugarcane in El Salvador. Fla Entomol 97(4):1835–1837Google Scholar
  34. Hall TA (1999) BioEdit: a user-friendly biological sequence alingnment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  35. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Biol Sci 270:313–321Google Scholar
  36. Hochwender CG, Fritz RS (2004) Plant genetic differences influence herbivore community structure: evidence from a hybrid willow system. Oecologia 138:547–557Google Scholar
  37. Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6(4):1–10Google Scholar
  38. Keifer HH (1944) Eriophyid studies XIV. Bull Calif Dept Agr 33:18–38Google Scholar
  39. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120Google Scholar
  40. Kornilios P, Kumlutas Y, Lymberakis P, Ilgaz Ç (2018) Cryptic diversity and molecular systematics of the Aegean Ophiomorus skinks (Reptilia: Squamata), with the description of a new species. J Zool Syst Evol Res 56:364–381Google Scholar
  41. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7. 0 for bigger datasets. Mol Biol Evol 33(7):1870–1874Google Scholar
  42. Laska A, Majer A, Szydło W, Karpicka-Ignatowska K, Hornyák M, Labrzycka A, Skoracka A (2018) Cryptic diversity within grass-associated Abacarus species complex (Acariformes: Eriophyidae), with the description of a new species, Abacarus plumiger n. sp. Exp Appl Acarol 76:1–28.  https://doi.org/10.1007/s10493-018-0291-6 Google Scholar
  43. Lee T, O´Foighil D (2004) Hidden Floridian biodiversity: mitochondrial and nuclear gene trees reveal four cryptic species within the scorched mussel, Brachidontes exustus, species complex. Mol Ecol 13:3527–3542Google Scholar
  44. Lewandowski M, Skoracka A, Szydło W, Kozak M, Druciarek T, Griffiths DA (2014) Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization. Exp Appl Acarol 63:497–520Google Scholar
  45. Li C, Wilkerson RC (2007) Intragenomic rDNA ITS2 variation in the Neotropical Anopheles (Nyssorhynchus) albitarsis complex (Diptera: Culicidae). J Hered 98:51–59Google Scholar
  46. Li HS, Xue XF, Hong XY (2014) Cryptic diversity in host-associated populations of Tetra pinnatifidae (Acari: Eriophyoidea): what do morphometric, mitochondrial and nuclear data reveal and conceal? Bull Entomol Res 104:221–232Google Scholar
  47. Lindquist EE (1996) External anatomy and systematic. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites- their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 3–31Google Scholar
  48. Maddison WP, Maddison DR (2016) Mesquite: a modular system for evolutionary analysis Version 3.11 http://mesquiteproject.org. Page RDM. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358Google Scholar
  49. McArthur R, Levins R (1967) The limiting of similarity, convergence, and divergence of co-existing species. Am Nat 10:377–385Google Scholar
  50. Miller AD, Skoracka A, Navia D et al (2013) Phylogenetic analyses reveal extensive cryptic speciation and host specialization in an economically important mite taxon. Mol Phylogenet Evol 66:928–940.  https://doi.org/10.1016/j.ympev.2012.11.021 Google Scholar
  51. Nalepa A (1892) Neue Arten der Gattung Phytoptus Dujardin und Cecidophyes Nalepa. Denkschriften der Kaiserlichen Akademie der Wissenschaften. Mathematische-Naturwissenschaftliche Klasse 59:525–540Google Scholar
  52. Nalepa A (1898) Zur Kenntniss der Gattung Trimerus Nalepa. Zool Jahrb 11:405–411Google Scholar
  53. Navajas M, Gutierrez J, Bonato O, Bolland HR, Mapangoudivassa S (1994) Intraspecific diversity of the cassava green mite Mononycellus progresivus (Acari, Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA-sequences and cross-breeding. Exp Appl Acarol 18:351–360Google Scholar
  54. Navajas M, Lagnel J, Gutierrez J, Boursot P (1998) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752Google Scholar
  55. Navia D, de Moraes GJ, Roderick G, Navajas M (2005) The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bull Entomol Research 95(6):505–516Google Scholar
  56. Navia D, Flechtmann CHW, Lindquist EE, Aguilar H (2011) A new species of Abacarus (Acari: Prostigmata: Eriophyidae) damaging sugarcane, Sacharum officinarum L., from Costa Rica-the first eriophyoid mite described with a tibial seta on leg II. Zootaxa 3025:51–58.  https://doi.org/10.5281/zenodo.278697 Google Scholar
  57. Navia D, Ferreira CB, Reis AC, Gondim MG Jr (2015) Traditional and geometric morphometrics supporting the differentiation of two new Retracrus (Phytoptidae) species associated with heliconias. Exp Appl Acarol 67:87–121Google Scholar
  58. Oca LM, D’Elía G, Perez-Miles F (2016) An integrative approach for species delimitation in the spider genus Grammostola (Theraphosidae, Mygalomorphae). Zool Scr 45:322–333Google Scholar
  59. Oldfield G (1996) Diversity and host plant specificity. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites-their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 199–216Google Scholar
  60. Ozman-Sullivan SK, Amrine JW Jr, Walter DE (2006) A new species of Eriophyoid mite (Acari: Eriophyidae) on sugarcane in Australia. Int J Acarol 32(4):384–395.  https://doi.org/10.1080/01647950608684487 Google Scholar
  61. Preszler RW, Boecklen WJ (1994) A three-trophic-level analysis of the effects of plant hybridization on a leaf-mining moth. Oecologia 100:66–73Google Scholar
  62. Radenkovic S, Zoric LS, Djan M et al (2018) Cryptic speciation in the Merodon luteomaculatus complex (Diptera: Syrphidae) from the eastern Mediterranean. J Zool Syst Evol Res 56:170–191Google Scholar
  63. Richter S, Schwentner M, Wirkner CS, Ahyong ST (2018) Phylogeny and species diversity of Tasmanian mountain shrimps and their relatives (Crustacea, Anaspidesidae). Zool Scr 47:84–105.  https://doi.org/10.1111/zsc.12263 Google Scholar
  64. Ronquist F, Teslenko M, Van der Mark P et al (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542Google Scholar
  65. Samadi S, Barberousse A (2009) Species: towards new, well-grounded practices. Biol J Linnean Soc 97:217–222.  https://doi.org/10.1111/j.1095-8312.2009.01191.x Google Scholar
  66. Skoracka A (2008) Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization. Evol Ecol 22:607–616Google Scholar
  67. Skoracka A, Dabert M (2010) The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bull Entomol Res 100(3):263–272Google Scholar
  68. Skoracka A, Smith L, Oldfield G, Cristofaro M, Amrine JW Jr (2010) Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Exp Appl Acarol 51:93–113Google Scholar
  69. Skoracka A, Kuczyński L, de Mendonça RS et al (2012) Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebr Syst 26:417–433.  https://doi.org/10.1071/IS11037 Google Scholar
  70. Skoracka A, Kuczyński L, SzydłoW Rector B (2013) The wheat curl mite Aceria tosichella (Acari: Eriophyoidea) is a complex of cryptic lineages with divergent host ranges: evidence from molecular and plant bioassay data. Biol J Linnean Soc 109(1):165–180Google Scholar
  71. Skoracka A, Kuczyński L, Rector B, Amrine JW (2014) Wheat curl mite and dry bulb mite: untangling a taxonomic conundrum through a multidisciplinary approach. Biol J Linn Soc 111(2):421–436.  https://doi.org/10.1111/bij.12213 Google Scholar
  72. Skoracka A, Magalhães S, Rector BG, Kuczyński L (2015) Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species? Exp Appl Acarol 67:165–182Google Scholar
  73. Skoracka A, Lewandowski M, Rector BG, Szydło W, Kuczyński L (2017) Spatial and host-related variation in prevalence and population density of wheat curl mite (Aceria tosichella) cryptic genotypes in agricultural landscapes. PLoS ONE 12(1):1–17Google Scholar
  74. Skoracka A, Lopes LF, Alves MJ et al (2018) Genetics of lineage diversification and the evolution of host usage in the economically important wheat curl mite, Aceria tosichella Keifer, 1969. BCM Evol Biol 18(122):1–15.  https://doi.org/10.1186/s12862-018-1234-x Google Scholar
  75. Staden R, Beal KF, Bonfield JK (2000) The Staden package, 1998. Methods Mol Biol 132:115–130Google Scholar
  76. Tamar K, Mitsi P, Carranza S (2018) Cryptic diversity revealed in the leaf-toed gecko Asaccus montanus (Squamata, Phyllodactylidae) from the Hajar Mountains of Arabia. J Zool Syst Evol Res 52:1–14Google Scholar
  77. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599.  https://doi.org/10.1093/molbev/msm092 Google Scholar
  78. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729.  https://doi.org/10.1093/molbev/mst197 Google Scholar
  79. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680Google Scholar
  80. Whitham TG (1989) Plant hybrid zones as sinks for pests. Science 244:1490–1493.  https://doi.org/10.1126/science.244.4911.1490 Google Scholar
  81. Whitham TG, Martinsen GD, Floate KD, Dungey HS, Potts BM, Keim P (1999) Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structure. Ecology 80:416–428.  https://doi.org/10.2307/176622 Google Scholar
  82. Xue XF, Dong Y, Deng W, Hong XY, Shao R (2017) The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Mol Phylogenet Evol 109:271–282.  https://doi.org/10.1016/j.ympev.2017.01.009 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Embrapa Recursos Genéticos e BiotecnologiaBrasiliaBrazil
  2. 2.Faculdade de Agronomia e Medicina VeterináriaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Population Ecology Lab, Faculty of Biology, Institute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
  4. 4.Universidade Federal de Alagoas, Campus ArapiracaArapiracaBrazil
  5. 5.Universidade Federal de Alagoas, Centro de Ciências Agrárias (CECA)AlagoasBrazil

Personalised recommendations