Advertisement

Hydrology-driven environmental variability determines abiotic characteristics and Oribatida diversity patterns in a Sphagnum peatland system

  • M. A. MinorEmail author
  • S. G. Ermilov
  • D. А. Philippov
Article
  • 24 Downloads

Abstract

We investigated oribatid mite communities in a Sphagnum-dominated boreal peatland system characterised by a mosaic of oligotrophic and meso-eutrophic areas. We aimed to determine the relative importance of environmental factors (pH, Sphagnum nutrient content, water table level, diversity of vascular plants and bryophytes in the surrounding plant community) and spatial variation in influencing abundance, diversity and community composition of aquatic and terrestrial oribatid mites. Among environmental variables, water table level (micro-topography), pH, and K in Sphagnum tissues were the main predictors of Oribatida community structure. Aquatic species were associated with pools; two terrestrial species—Hoplophthiracarus illinoisensis and Nothrus pratensis—were associated with oligotrophic hummocks; the rest of terrestrial species were associated with dryer mesotrophic and eutrophic habitats. Low water table depth (hummocks), high local plant diversity, and high P in Sphagnum tissues were predictors of high abundance of terrestrial Oribatida. Species richness of terrestrial Oribatida was linked with low water table and high plant diversity. For aquatic Oribatida abundance, water table depth was the single most important predictor variable. Plot trophic class (its status on the peatland poor-rich gradient assigned based on plant indicator species) was also a significant predictor of terrestrial Oribatida abundance, richness, and community structure. Spatial structuring was important for terrestrial Oribatida community composition, weak (P < 0.10) for terrestrial Oribatida abundance and richness, and not significant for aquatic Oribatida.

Keywords

Microarthropods Abundance Species richness Community structure Productivity Habitat diversity 

Notes

Acknowledgements

We thank Alexander A. Prokin (Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia) for funding chemical analysis, Victoria V. Yurchenko (Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia) for pH analysis, and Dr. Gillian Rapson (School of Agriculture and Environment, Massey University, New Zealand) for discussion of Sphagnum bogs. We also thank the anonymous reviewers for helpful suggestions which improved the paper. Fieldwork was carried out as a part of the Russian Science Foundation Grant no. 14-14-01134. Work by D. A. Philippov was supported within the framework of the state assignments from the Russian Federal Agency for Scientific Organizations (IBIW RAS theme no. AAAA-A18-118012690099-2).

Supplementary material

10493_2018_332_MOESM1_ESM.pdf (476 kb)
Supplementary material 1 (PDF 476 KB)

References

  1. Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994CrossRefGoogle Scholar
  2. Anderson AS, Davis RB, Janssens JA (1995) Relationships of bryophytes and lichens to environmental gradients in Maine peatlands. Vegetatio 120:147–259CrossRefGoogle Scholar
  3. Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallen B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Change Biol 7:591–598CrossRefGoogle Scholar
  4. Borcard D, von Ballmoos VC (1997) Oribatid mites (Acari, Oribatida) of a primary peat bog pasture transition in the Swiss Jura Mountains. Ecoscience 4:470–479CrossRefGoogle Scholar
  5. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structures of ecological data at all scales. Ecology 85:1826–1832CrossRefGoogle Scholar
  6. Bragazza L, Gerdol R (2002) Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands? J Veg Sci 13:473–482CrossRefGoogle Scholar
  7. Bragazza L, Freeman C, Jones T et al (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. PNAS 103:19386–19389CrossRefGoogle Scholar
  8. Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends Ecol Evol.  https://doi.org/10.1016/j.tree.2017.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366CrossRefGoogle Scholar
  10. Clarke KR, Gorley RN, Somerfield PJ, Warwick RM (2014) Change in marine communities: an approach to statistical analysis and interpretation, 3rd edn. PRIMER-E, PlymouthGoogle Scholar
  11. Comte L, Cucherousset J, Boulêtreau S, Olden JD (2016). Resource partitioning and functional diversity of worldwide freshwater fish communities. Ecosphere.  https://doi.org/10.1002/ecs2.1356 CrossRefGoogle Scholar
  12. Donaldson GM (1996) Oribatida (Acari) associated with three species of Sphagnum at Spruce Hole Bog, New Hampshire, USA. Can J Zool 74:1713–1720CrossRefGoogle Scholar
  13. Eurola S, Holappa K (1985) The Finnish mire type system. Aquilo Ser Bot 21:101–110Google Scholar
  14. Eurola S, Huttunen A (2006) Mire plant species and their ecology in Finland. In: Lindholm T, Heikkilä R (eds) Finland—land of mires. The Finnish environment 23/2006. Finnish Environment Institute, Helsinki, pp 127–144Google Scholar
  15. Genuer R, Poggi J-M, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recognit Lett 31:2225–2236CrossRefGoogle Scholar
  16. Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007) Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Glob Change Biol 13:1810–1821CrossRefGoogle Scholar
  17. Gilbert D, Amblard C, Bourdier G, Francez A-J (1998) Short-term effect of nitrogen enrichment on the microbial communities of a peatland. Hydrobiologia 373:111–119CrossRefGoogle Scholar
  18. Guasch H, Marti E, Sabater S (1995) Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshw Biol 33:373–383CrossRefGoogle Scholar
  19. Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279CrossRefGoogle Scholar
  20. Hájek T (2009) Habitat and species controls on Sphagnum production and decomposition in a mountain raised bog. Bor Environ Res 14:947–958Google Scholar
  21. Hajkova P, Hajek M (2007) Sphagnum distribution patterns along environmental gradients in Bulgaria. J Bryol 29:18–26CrossRefGoogle Scholar
  22. Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari:Oribatida) in litterbags. Appl Soil Ecol 9:17–23CrossRefGoogle Scholar
  23. Hatcher L (1996) Using SAS® PROC CALIS for path analysis: an introduction. Struct Equ Model 3:176–192CrossRefGoogle Scholar
  24. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218CrossRefGoogle Scholar
  25. Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR (2014) Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry 120:203–224CrossRefGoogle Scholar
  26. HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43:227–248CrossRefGoogle Scholar
  27. Ignatov MS, Ignatova EA (2003) Moss flora of the Middle European Russia. Sphagnaceae—Hedwigiaceae. Arctoa 1(suppl 1):1–608 (In Russian) CrossRefGoogle Scholar
  28. Ignatov MS, Afonina OM, Ignatova EA et al (2006) Check-list of mosses of East Europe and North Asia. Arctoa 15:1–130.  https://doi.org/10.15298/arctoa.15.01 CrossRefGoogle Scholar
  29. Jassey VEJ, Meyer C, Dupuy C, Bernard N, Mitchell EAD, Toussaint M-L, Metian M, Chatelain AP, Gilbert D (2013) To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a sphagnum peatland? Microb Ecol 66:571e580CrossRefGoogle Scholar
  30. Johnson MG, Granath G, Tahvanainen T, Pouliot R, Stenøien HK, Rochefort L, Rydin H, Shaw AJ (2014) Evolution of niche preference in Sphagnum peat mosses. Evolution 69:90–103CrossRefGoogle Scholar
  31. Kaneko N, Salamanca E (1999) Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak–pine stand in Japan. Ecol Res 14:131–138CrossRefGoogle Scholar
  32. Kaneko N, Sugawara Y, Miyamoto T, Hasegawa M, Hiura T (2005) Oribatid mite community structure and tree species diversity: a link? Pedobiologia 49:521–528CrossRefGoogle Scholar
  33. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164CrossRefGoogle Scholar
  34. Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2014) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol.  https://doi.org/10.1111/1365-2435.12345 CrossRefGoogle Scholar
  35. Lafleur PM, Hember RA, Admiral SM, Roulet NT (2005) Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrol Process 19:3533–3550CrossRefGoogle Scholar
  36. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  37. Lehmitz R, Maraun M (2016) Small-scale spatial heterogeneity of stable isotopes signatures (d15N, d13C) in Sphagnum sp. transfers to all trophic levels in oribatid mites. Soil Biol Biochem 100:242–251CrossRefGoogle Scholar
  38. Limpens J, Berendse F, Klees H (2003) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347CrossRefGoogle Scholar
  39. Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804CrossRefGoogle Scholar
  40. Limpens J, Granath G, Gunnarsson U et al (2011) Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol 191:496–507CrossRefGoogle Scholar
  41. Limpens J, Bohlin E, Nilsson MB (2017) Phylogenetic or environmental control on the elemental and organo-chemical composition of Sphagnum mosses? Plant Soil 417:69–85CrossRefGoogle Scholar
  42. Markkula I (1986) Comparison of the communities of oribatids (Acari: Cryptostigmata) of virgin and forest ameliorated pine bogs. Ann Zool Fennici 23:33–38Google Scholar
  43. Mieczan T, Adamczuk M, Pawlik-Skowrońska B, Toporowska M (2015) Eutrophication of peatbogs: consequences of P and N enrichment for microbial and metazoan communities in mesocosm experiments. Aquat Microb Ecol.  https://doi.org/10.3354/ame01727 CrossRefGoogle Scholar
  44. Minor MA, Ermilov SG, Philippov DA, Prokin AA (2016) Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs. Exp Appl Acarol.  https://doi.org/10.1007/s10493-016-0075-9 CrossRefPubMedGoogle Scholar
  45. Murphy MA, Evans JS, Storfer AS (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261CrossRefGoogle Scholar
  46. Nielsen UN, Osler GHR, Campbell CD, Neilson R, Burslem DFRP, van der Wal R (2010) The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS One 5(7):e11567CrossRefGoogle Scholar
  47. Nielsen UN, Osler GHR, Campbell CD, Burslem DFRP, van der Wal R (2012) Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats. Pedobiologia 55:83–91CrossRefGoogle Scholar
  48. Perez-Harguindeguy N, Diaz S, Cornelissen JH, Venramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30CrossRefGoogle Scholar
  49. Philippov DA (2015) Flora Shichengskogo vodno-bolotnogo ugodya Vologodskaya oblast [Flora of wetland ‘Shichengskoe’ (Vologda Region, Russia)]. Phytodiversity of Eastern Europe IX. pp 86–117 (in Russian with English summary) Google Scholar
  50. Philippov DA, Boychuk MA (2015) Mkhi Shichengskogo landshaftnogo zakaznika (Vologodskaya oblast) [Mosses of the Shichengskiy Landscape Reserve (Vologda Region)]. Vestnik of Northern (Arctic) Federal University, ser. Nat Sci 2:80–89 (in Russian with English summary) Google Scholar
  51. Ruuhijärvi R, Lindholm T (2006) Ecological gradients as the basis of Finnish mire site type system. In: Lindholm T, Heikkilä R (eds) Finland—land of mires. The Finnish Environment 23/2006. Finnish Environment Institute, Helsinki, pp 119–126Google Scholar
  52. Rydin H, Jeglum JK (2013) The biology of peatlands, 2nd edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  53. Rydin H, Sjörs H, Löfroth M (1999) Mires. Acta Phytogeogr Suec 84:91–112Google Scholar
  54. Seniczak A (2011) Oribatid mites (Acari, Oribatida) and their seasonal dynamics in a floating bog mat in Jeziorka Kozie Reserve, Tuchola Forest (Poland). Biol Lett 48:3–11CrossRefGoogle Scholar
  55. Seniczak A, Seniczak S, Kowalski J, Graczyk R, Mistrzak M (2014) Mites (Acari) at the edges of bog pools in Orawa–Nowy-Targ Basin (S Poland), with particular reference to the Oribatida. Biol Lett 51:93–102CrossRefGoogle Scholar
  56. Spitzer K, Danks HV (2006) Insect biodiversity of boreal peat bogs. Annu Rev Entomol 51:137–161CrossRefGoogle Scholar
  57. Stary J (2006) Contribution to the knowledge of the oribatid mite fauna (Acari, Oribatida) of peat bogs in Bohemian Forest. Silva Gabreta 12:35–47Google Scholar
  58. Strakova P, Niemi RM, Freeman C, Peltoniemi K, Toberman H, Heiskanen I, Fritze H, Laiho R (2011) Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences 8:2741–2755CrossRefGoogle Scholar
  59. Subías LS (2018) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (excepto fósiles). p 605. http://bba.bioucm.es/cont/docs/RO_1.pdf. Accessed 05 Dec 2018
  60. Sutherland WJ, Freckleton RP, Godfray HCJ et al (2013) Identification of 100 fundamental ecological questions. J Ecol.  https://doi.org/10.1111/1365-2745.12025 CrossRefGoogle Scholar
  61. Tahvanainen T (2004) Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of the north-eastern Fennoscandian Shield. Folia Geobot 39:353–369CrossRefGoogle Scholar
  62. Tarnocai C, Stolbovoy V (2006) Northern peatlands: their characteristics, development and sensitivity to climate change. Dev Earth Surf Proc 9:17–51CrossRefGoogle Scholar
  63. Tarras-Wahlberg N (1961) The Oribatei of a central Swedish bog and their environment. Oikos 4:1–56Google Scholar
  64. Tipping E, Benham S, Boyle JF, Crow P, Davies J, Fischer U, Guyatt H, Helliwell R, Jackson-Blake L, Lawlor AJ, Monteith DT, Rowe EC, Toberman H (2014) Atmospheric deposition of phosphorus to land and freshwater. Environ Sci Proc Impacts 16:1608–1617CrossRefGoogle Scholar
  65. Toberman H, Tipping E, Boyle JF, Helliwell RC, Lilly A, Henrys PA (2015) Dependence of ombrotrophic peat nitrogen on phosphorus and climate. Biogeochemistry 125:11–20CrossRefGoogle Scholar
  66. Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuiitla E-S (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196:49–67CrossRefGoogle Scholar
  67. van den Elzen E, Kox MAR, Harpenslager SF, Hensgens G, Fritz C, Jetten MSM, Ettwig KF, Lamers LPM (2017) Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth. Biogeosciences 14:1111–1122CrossRefGoogle Scholar
  68. van den Elzen E, van den Berg LJL, van der Weijden B, Fritz C, Sheppard LJ, Lamers LPM (2018) Effects of airborne ammonium and nitrate pollution strongly differ in peat bogs, but symbiotic nitrogen fixation remains unaffected. Sci Total Environ.  https://doi.org/10.1016/j.scitotenv.2017.08.102 CrossRefPubMedGoogle Scholar
  69. Weigmann G (1991) Oribatid communities in transects from bogs to forests in Berlin indicating the biotope qualities. Mod Acarol 1:359–364Google Scholar
  70. Weigmann G (2006) Hornmilben (Oribatida). Die Tierwelt Deutschalnds. 76 Teil. Goecke and Evers, KelternGoogle Scholar
  71. Weigmann G, Deichsel R (2006) Acari: limnic Oribatida. In: Gerecke R (ed) Chelicerata: Araneae, Acari I. Susswasserfauna von Mitteleuropa, Band 7/2-1. Spektrum Akademischer Verlag, Heidelberg, pp 89–112CrossRefGoogle Scholar
  72. Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203CrossRefGoogle Scholar
  73. White JR, Reddy KR (2000) Influence of phosphorus loading on organic nitrogen mineralization of everglades soils. Soil Sci Soc Am J 64:1525–1534CrossRefGoogle Scholar
  74. Winkler M, Illmer P, Querner P, Fischer BM, Hofmann K, Lamprecht A, Praeg N, Schied J, Steinbauer K, Pauli H (2018) Side by side? Vascular plant, invertebrate, and microorganism distribution patterns along an alpine to nival elevation gradient. Arct Antarct Alp Res 50:1–13CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
  2. 2.Tyumen State UniversityTyumenRussia
  3. 3.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia

Personalised recommendations