Advertisement

Experimental and Applied Acarology

, Volume 76, Issue 4, pp 513–522 | Cite as

The life cycle and development characteristics of Dermacentor everestianus (Acari: Ixodidae) under field conditions in Qinghai–Tibet Plateau

  • Tuo Li
  • Ming Liu
  • Tian-Tian Zhang
  • Yuan Li
  • Wen-Ying Wang
  • Meng-Meng Li
  • Zhi-Jun Yu
  • Jing-Ze Liu
Article
  • 38 Downloads

Abstract

The tick Dermacentor everestianus mainly distributed in Tibet, China and Nepal, and can transmit some pathogens causing great damages in Qinghai-Tibet Plateau. This study investigated the life cycle and development characteristics of D. everestianus under field conditions. The average duration of the whole life cycle of D. everestianus was 124.4 days, with the host available in the field plot. Under natural conditions, the mean feeding, preoviposition and oviposition period of female ticks were 6.1, 17.9 and 21.2 days, respectively. The incubation time of eggs was the longest phase in the life cycle of the ticks (26 days on average). Moreover, the weight of engorged females was highly positively correlated with the number of the eggs that were laid (r = 0.81, P < 0.05). The reproductive efficiency index and reproductive fitness index in females were 7.3 and 5.9, respectively. The above findings suggest that the tick D. everestianus have evolved well adaptability to the highland areas.

Keywords

Dermacentor everestianus Life cycle Field conditions Tibet 

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (31672365), and Youth Foundation of Department of Education of Hebei Province (QN2018027).

References

  1. Apanaskevich DA, Duan W, Apanaskevich MA, Filippova NA, Chen J (2015) Redescription of Dermacentor everestianus Hirst (Acari: Ixodidae), a parasite of mammals in mountains of China and Nepal with synonymization of D. abaensis Teng and D. birulai Olenev. J Parasitol 100(3):268–278.  https://doi.org/10.1645/13-369.1 CrossRefGoogle Scholar
  2. Belozerov VN (1982) Diapause and biological rhythms in ticks. In: Obenchain FD, Galun R (eds) Physiology of ticks. Pergamon Press, Oxford, pp 469–500CrossRefGoogle Scholar
  3. Branagan D (1973) The developmental periods of the ixodid tick Rhipicephalus appendiculatus Neum. under laboratory conditions. Bull Entomol Res 63(1):155–168.  https://doi.org/10.1017/S0007485300050951 CrossRefGoogle Scholar
  4. Cao HL, Ye RY, Xiao H, Riziwan (1991) Observations on the Biology of Dermacentor marginatus (Acariformes: Ixodidae). Endem Dis Bull 3:117–122. (in Chinese)Google Scholar
  5. Chen Z, Li Y, Liu Z, Yang J, Yin H (2012) The life cycle of Hyalomma rufipes (Acari: Ixodidae) under laboratory conditions. Exp Appl Acarol 56(1):85–92.  https://doi.org/10.1007/s10493-011-9490-0 CrossRefPubMedGoogle Scholar
  6. Chen Z, Li YQ, Ren QY, Luo J, Liu ZJ, Zhou X, Liu GY, Luo GX, Yin H (2014) Dermacentor everestianus Hirst, 1926 (Acari: Ixodidae): phylogenetic status inferred from molecular characteristics. Parasitol Res 113(10):3773–3779.  https://doi.org/10.1007/s00436-014-4043-1 CrossRefPubMedGoogle Scholar
  7. Chilton NB (1992) An index to assess the reproductive fitness of female ticks. Int J Parasitol 22(1):109–111.  https://doi.org/10.1016/0020-7519(92)90086-Z CrossRefPubMedGoogle Scholar
  8. Despins JL (1992) Effects of temperature and humidity on ovipositional biologyand egg development of the tropical horse tick Dermacentor (Anocentor) nitens. J Med Entomol 29(2):332–337.  https://doi.org/10.1093/jmedent/29.2.332 CrossRefPubMedGoogle Scholar
  9. Drummond RQ, Whetstone TM (1970) Oviposition of the Gulf Coast tick. J Econ Entomol 63(5):1548–1551.  https://doi.org/10.1093/jee/63.5.1547 CrossRefGoogle Scholar
  10. Estrada-Pen˜a A, de la Fuente J (2014) The ecology of ticks and epidemiology of tick-borne viral diseases. Antivir Res 108:104–128.  https://doi.org/10.1016/j.antiviral.2014.05.016 CrossRefGoogle Scholar
  11. Estrada-Peña A, Jongejan F (1999) Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 23(9):685–715.  https://doi.org/10.1023/A:1006241108739 CrossRefPubMedGoogle Scholar
  12. Frenot Y, de Oliviera E, Gauthier-Clerc M, Deunff J, Bellido A, Vernon P (2001) Life cycle of the tick Ixodes uriae in penguin colonies: relationships with host breeding activity. Int J Parasitol 31(10):1040–1047.  https://doi.org/10.1016/S0020-7519(01)00232-6 CrossRefPubMedGoogle Scholar
  13. Jin S, Wang TH, Li T, Liu M, Li T, Yang XL, Wang H, Jia QY, Yu ZJ, Liu JZ (2017) Life cycle of Dermacentor everestianus Hirst, 1926 (Acari: Ixodidae) under laboratory conditions. Korean J Parasitol 55(2):193–196.  https://doi.org/10.3347/kjp.2017.55.2.193 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liu M, Li T, Yu ZJ, Gao XH, Zuo CW, Wang RR, Li NX, Wang H, Liu JZ (2016) Characterization of the life cycle of the tick Haemaphysalis tibetensis under field conditions in Qinghai–Tibet plateau. Exp Appl Acarol 69(1):107–115.  https://doi.org/10.1007/s10493-016-0020-y CrossRefPubMedGoogle Scholar
  15. Oliver JH (1989) Biology and systematics of ticks (Acari: Ixodidae). Annu Rev Ecol Syst 20:397–430.  https://doi.org/10.1146/annurev.es.20.110189.002145 CrossRefGoogle Scholar
  16. Padgett K, Lane RS (2001) Life cycle of Ixodes pacificus (Acari: Ixodidae): timing of developmental processes under field and laboratory conditions. J Med Entomol 38(5):684–693.  https://doi.org/10.1603/0022-2585-38.5.684 CrossRefPubMedGoogle Scholar
  17. Rodrigues DS, Maciel R, Cunha LM, Leite RC, de Oliveira PR (2010) Amblyomma rotundatum (Koch, 1844) (Acari: Ixodidae) two-host life-cycle on Viperidae snakes. Rev Bras Parasitol Vet 19(3):174.  https://doi.org/10.1590/S1984-29612010000300009 CrossRefPubMedGoogle Scholar
  18. Snow KR, Arthur DR (1966) Oviposition in Hyalomma anatolicum anatolicum (Koch 1844) (Acarina: Ixodidae). Parasitology 56(3):555–568CrossRefPubMedGoogle Scholar
  19. Teng GF, Jiang ZJ (1991) Economic insect fauna of China, Fasc 39 Acari: Ixodidae. Science Press, Beijing. (in Chinese)Google Scholar
  20. Visser B, Lann CL, Snaas H, Verdeny-Vilalta O, Harvey JA (2016) Divergent life history strategies in congeneric hyperparasitoids. Evol Ecol 30(3):535–549.  https://doi.org/10.1007/s10682-016-9819-6 CrossRefGoogle Scholar
  21. Yu ZJ, Zheng HY, Chen Z, Zheng B, Liu JZ (2010) The life cycle and biological characteristics of Dermacentor silvarum Olenev (Acari: Ixodidae) under field conditions. Vet Parasitol 168(3):323–328.  https://doi.org/10.1016/j.vetpar.2009.11.010 CrossRefPubMedGoogle Scholar
  22. Yu ZJ, Wang H, Wang TH, Sun WY, Yang XL, Liu JZ (2015) Tick-borne pathogens and the vector potential of ticks in China. Parasit Vectors 8:24.  https://doi.org/10.1186/s13071-014-0628-x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Yu ZJ, Zhang S, Wang TH, Yang X, Wang H, Liu JZ (2018) The mitochondrial genome and phylogenetic analysis of the tick Dermacentor everestianus hirst, 1926 (acari: ixodidae). Syst Appl Acarol 23(7):1313–1321.  https://doi.org/10.11158/saa.23.7.8 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tuo Li
    • 1
  • Ming Liu
    • 2
  • Tian-Tian Zhang
    • 1
  • Yuan Li
    • 1
  • Wen-Ying Wang
    • 1
  • Meng-Meng Li
    • 1
  • Zhi-Jun Yu
    • 1
  • Jing-Ze Liu
    • 1
  1. 1.Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life SciencesHebei Normal UniversityShijiazhuangPeople’s Republic of China
  2. 2.College of Basic MedicineChengde Medical UniversityChengdePeople’s Republic of China

Personalised recommendations