Advertisement

Acaricidal effect of Schinus molle (Anacardiaceae) essential oil on unengorged larvae and engorged adult females of Rhipicephalus sanguineus (Acari: Ixodidae)

  • Catalina Rey-Valeirón
  • Keila Pérez
  • Lucía Guzmán
  • Javier López-Vargas
  • Eduardo Valarezo
Article

Abstract

The current concern about resistance to acaricides and the impact of toxic waste on the environment has led to the search of vegetal alternatives in the control of the brown tick of the dog Rhipicephalus sanguineus. Schinus molle L. (Anacardiaceae) derivatives have been associated with insecticidal, antimicrobial and antiprotozoal activities and essential oil showed to be lethal to R. microplus larvae. This study aimed at evaluating the acaricidal effect of essential oil of S. molle (EOSm) on engorged adult females and larval stages of R. sanguineus. One-hundred engorged females were obtained from the ears, interdigital spaces, neck, groin and base of the tail of two cross-bred dogs. The larvae package test was accomplished with 21-day-old larvae and five concentrations (v/v) of EOSm (0.125, 0.25, 0.50, 1 and 2%) in an anionic detergent, a synthetic acaricide (cypermethrin) and detergent and deionized water as controls. The immersion adult test was carried out with nine concentrations (0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 20%) of the EOSm. At the concentration of 2%, EOSm caused 99.3% of larval mortality. In adults, inhibition of oviposition, egg hatching (EH) and reproductive efficiency (RE) values were dose-dependent from 4 to 20% EOSm; the lowest values of EH (29.62) and RE (22.61) were achieved with 20% EOSm. Strong and negative correlations were found between concentration of EOSm and EH (r = − 0.948) and between concentration of EOSm and RE (r = − 0.985). This study demonstrated for the first time the acaricidal effect of EOSm on larvae and reproductive parameters of engorged adult females of R. sanguineus.

Keywords

Essential oil Schinus molle Biological control Rhipicephalus sanguineus 

Notes

Acknowledgements

To Lic. Víctor García and DVM Yoselín Dietes, Universidad Nacional Experimental Francisco de Miranda, Venezuela, for their invaluable technical assistance. To Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT), República del Ecuador, for making possible the scientific cooperation between Catalina Rey-Valeirón, Lucía Guzmán y Eduardo Valarezo through Proyecto Prometeo.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The ticks were collected from dogs under qualified veterinary supervision without causing pain or distress, as the Code of Bioethics and Biosecurity by Fondo Nacional de Ciencia, Tecnología e Innovación, Venezuela. Acquiescence of owner for tick sampling was previously asked. Participation was voluntary.

References

  1. Abbott W (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267.  https://doi.org/10.1093/jee/18.2.265a CrossRefGoogle Scholar
  2. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured, Illinois, USAGoogle Scholar
  3. Andreotti R, Garcia MV, Cunha RC, Barros J (2013) Protective action of Tagetes minuta (Asteraceae) essential oil in the control of Rhipicephalus microplus (Canestrini, 1887) (Acari: Ixodidae) in a cattle pen trial. Vet Parasitol 197:341–345.  https://doi.org/10.1016/j.vetpar.2013.04.045 CrossRefPubMedGoogle Scholar
  4. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils: a review. Food Chem Toxicol 46:446–475.  https://doi.org/10.1016/j.fct.2007.09.106 CrossRefGoogle Scholar
  5. Batista LCDSO, Cid Y, De Almeida A, Prudêncio E, Riger C, De Souza M, Coumendouros K, Chaves D (2016) In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis. Parasitology 143:627–638.  https://doi.org/10.1017/S0031182016000081 CrossRefPubMedGoogle Scholar
  6. Bernhard RA, Shibamoto T, Yamaguchi K, White E (1983) The volatile constituents of Schinus molle L. J Agric Food Chem 31:463–466.  https://doi.org/10.1021/jf00116a075 CrossRefGoogle Scholar
  7. Bhattacharya S (2015) Cultivation of essential oils. In: Preedy V (ed) Essential oils in food preservation, flavor and safety. Elsevier, Amsterdam, pp 19–29.  https://doi.org/10.1016/b978-0-12-416641-7.00003-1 CrossRefGoogle Scholar
  8. Bissinger BW, Schmidt JP, Owens JJ, Mitchell SM, Kennedy MK (2014) Activity of the plant-based repellent, TT-4302 against the ticks Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis and Rhipicephalus sanguineus (Acari: Ixodidae). Exp Appl Acarol 62:105–113.  https://doi.org/10.1007/s10493-013-9719-1 CrossRefPubMedGoogle Scholar
  9. Blenau W, Rademacher E, Baumann A (2012) Plant essential oils and formamidines as insecticides/acaricides: What are the molecular targets? Apidologie 43:334–347.  https://doi.org/10.1007/s13592-011-0108-7 CrossRefGoogle Scholar
  10. Borges LMF, de Sousa LAD, Barbosa C (2011) Perspectives for the use of plant extracts to control the cattle tick Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet 20:89–96.  https://doi.org/10.1590/S1984-29612011000200001 CrossRefPubMedGoogle Scholar
  11. Bras C, Gumilar F, Gandini N, Minetti A, Ferrero A (2011) Evaluation of the acute dermal exposure of the ethanolic and hexanic extracts from leaves of Schinus molle var areira L. in rats. J Ethnopharmacol 137:1450–1456.  https://doi.org/10.1016/j.jep.2011.08.036 CrossRefPubMedGoogle Scholar
  12. Castelblanco L, Sanabria O, Cruz A, Rodríguez C (2013) Preliminary report of the ixodicidal effect of some plant extracts on ticks Boophilus microplus. Rev Cub Plantas Med 18:118–130Google Scholar
  13. Chantraine J, Laurent D, Ballivian C, Saavedra G, Ibañez R, Vilaseca LA (1998) Insecticidal activity of essential oils on Aedes aegypti larvae. Phytother Rev 12:350–354.  https://doi.org/10.1002/(SICI)1099-1573(199808) CrossRefGoogle Scholar
  14. Cidade-Torres F, Machado Lucas A, Sardá Ribeiro VL, Martins JR, von Poser G, Guala MS, Elder HV, Cassel E (2012) Influence of essential oil fractionation by vacuum distillation on acaricidal activity against the cattle tick. Braz Arch Biol Technol 55:613–621CrossRefGoogle Scholar
  15. Cossió-Bayúgar R, Miranda-Miranda E, Fernández-Rubalcaba M, Narvaéz Padilla V, Reynaud E (2015) Adrenergic ligands that block oviposition in the cattle tick Rhipicephalus microplus affect ovary contraction. Sci Rep.  https://doi.org/10.1038/srep15109 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Da Silva EMG, Rodrigues VS, Jorge JO, Osava CF, Szabó MPJ, Garcia MV, Andreotti R (2016) Efficacy of Tagetes minuta (Asteraceae) essential oil against Rhipicephalus sanguineus (Acari: Ixodidae) on infested dogs and in vitro. Exp Appl Acarol 70:483–489.  https://doi.org/10.1007/s10493-016-0092-8 CrossRefPubMedGoogle Scholar
  17. Dantas-Torres F (2010) Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasit Vectors 3:26.  https://doi.org/10.1186/1756-3305-3-26 CrossRefPubMedPubMedCentralGoogle Scholar
  18. De Mendonça P, Rodilla JM, Díez D, Elder H, Guala MS, Silva LA, Baltazar E (2012) Synergistic Antibacterial activity of the essential oil of Aguaribay (Schinus molle L.). Molecules 17:12023–12036.  https://doi.org/10.3390/molecules171012023 CrossRefGoogle Scholar
  19. dos Santos A, Alves MS, da Silva LCP, Patrocínio DS, Sanches MN, Chaves DSA, Souza MAA (2015) Volatiles composition and extraction kinetics from Schinus erebinthifolius and Schinus molle leaves and fruit. Rev Bras Farmacogn 25:356–362.  https://doi.org/10.1016/j.bjp.2015.07.003 CrossRefGoogle Scholar
  20. Drummond R, Ernst S, Trevino J, Gladney W, Graham O (1973) Boophilus annulatus and Boophilus microplus: laboratory test of insecticides. J Econ Entomol 66:130–133.  https://doi.org/10.1093/jee/66.1.130 CrossRefPubMedGoogle Scholar
  21. Eiden A, Kaufman P, Oi F, Allan S, Miller R (2015) Detection of permethrin resistance and fipronil tolerance in Rhipicephalus sanguineus (Acari: Ixodidae) in the United States. J Med Entomol 52:429–436.  https://doi.org/10.1093/jme/tjv005 CrossRefPubMedGoogle Scholar
  22. Ellse L, Wall R (2014) The use of essential oils in veterinary ectoparasite control: a review. Med Vet Entomol 28:233–243.  https://doi.org/10.1111/mve.12033 CrossRefPubMedGoogle Scholar
  23. Food and Agriculture Organization (FAO) (2004) Resistance management and integrated parasites control in ruminants. Guidelines, module 1: ticks acaricide resistance, diagnosis, management and prevention. Food and Agriculture Organization (FAO), Rome, pp 25–77Google Scholar
  24. George DR, Callaghan K, Guy JH, Sparagano OAE (2008) Lack of prolonged activity of lavender essential oils as acaricides against the poultry red mite (Dermanyssus gallinae) under laboratory conditions. Res Vet Sci 85:540–542.  https://doi.org/10.1016/j.rvsc.2008.02.001 CrossRefPubMedGoogle Scholar
  25. Gomes GA, Monteiro CMO, Julião LS, Maturano R, Senra TOS, Zeringóta V, de Carvalho MG (2014) Acaricidal activity of essential oil from Lippia sidoides on unengorged larvae and nymphs of Rhipicephalus sanguineus (Acari: Ixodidae) and Amblyomma cajennense (Acari: Ixodidae). Exp Parasitol 137:41–45.  https://doi.org/10.1016/j.exppara.2013.12.003 CrossRefPubMedGoogle Scholar
  26. Goode P, Ellse L, Wall R (2018) Preventing tick attachment to dogs using essential oils. Ticks Tick Borne Dis 9:921–926.  https://doi.org/10.1016/j.ttbdis.2018.03.029 CrossRefPubMedGoogle Scholar
  27. Graham L, Wells DL, Hepper PG (2005) The influence of olfactory stimulation on the behaviour of dogs housed in a rescue shelter. Appl Anim Behav Sci 91:143–153.  https://doi.org/10.1016/j.applanim.2004.08.024 CrossRefGoogle Scholar
  28. Guba R (2001) Toxicity myths—essential oils and their carcinogenic potential. Int J Aromather 11:76–83.  https://doi.org/10.1016/s0962-4562(01)80021-7 CrossRefGoogle Scholar
  29. Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M (2018) Molecular targets for components of essential oils in the insect nervous system—a review. Molecules 23:34.  https://doi.org/10.3390/molecules23010034 CrossRefGoogle Scholar
  30. Kačániová M, Vukovič N, Horská E, Salamon I, Bobková A, Hleba L, Fiskelová M, Vatľák A, Petrová J, Bobko M (2014) Antibacterial activity against Clostridium genus and antiradical activity of the essential oils from different origin. J Environ Sci Health B 49:505–512.  https://doi.org/10.1080/03601234.2014.896673 CrossRefPubMedGoogle Scholar
  31. Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour Technol 99:8788–8795.  https://doi.org/10.1016/j.biortech.2008.04.048 CrossRefPubMedGoogle Scholar
  32. Li Y, Fink C, El-Kholy S, Roeder T (2015) The octopamine receptor octß2R is essential for ovulation and fertilization in the fruit fly Drosophila melanogaster. Arch Insect Biochem Physiol 88:168–178.  https://doi.org/10.1002/arch.21211 CrossRefPubMedGoogle Scholar
  33. López MD, Pascual-Villalobos MJ (2010) Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crops Prod 31:284–288.  https://doi.org/10.1016/j.indcrop.2009.11.005 CrossRefGoogle Scholar
  34. Manzoor F, Fazal S, Munir N, Naz S, Khalid A (2013) Acaricidal activity of essential oils from tulsi (Ocimum basilicum), bach (Acorus calamus), and mint (Mentha arvensis) against Rhipicephalus sanguineus (Latreille). Asian J Chem 25:6787–6790.  https://doi.org/10.14233/ajchem.2013.14680 CrossRefGoogle Scholar
  35. Martins M, Arantes S, Candeias F, Tinoco M, Cruz J (2014) Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J Ethnopharmacol 151:485–492.  https://doi.org/10.1016/j.jep.2013.10.063 CrossRefGoogle Scholar
  36. Molina-Garza Z, Bazaldúa A, Quintanilla R, Galaviz L (2014) Anti-Trypanosoma cruzi activity of 10 medicinal plants used in northeast Mexico. Acta Tropic 136:14–18.  https://doi.org/10.1016/j.actatropica.2014.04.006 CrossRefGoogle Scholar
  37. Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378.  https://doi.org/10.1016/j.biortech.2009.07.048 CrossRefPubMedGoogle Scholar
  38. NIST 05 Mass Spectral Library (NIST/EPA/NIH) (2005) National Institute of Standards and Technology, Gaithersburg, Maryland, USAGoogle Scholar
  39. Otranto D, Dantas-Torres F, Breitschwerdt E (2009) Managing canine vector-borne diseases of zoonotic concern: part one. Trends Parasitol 25:57–163.  https://doi.org/10.1016/j.pt.2009.01.003 CrossRefGoogle Scholar
  40. Pang YP, Brimijoin S, Ragsdale DW, Zhu KY, Suranyi R (2012) Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides. Curr Drug Targets 13:471–482.  https://doi.org/10.2174/138945012799499703 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pavela R, Canale A, Mehlhorn H, Benelli G (2016) Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: a review. Res Vet Sci 109:1–9.  https://doi.org/10.1016/j.rvsc.2016.09.001 CrossRefPubMedGoogle Scholar
  42. Politi FAS, Figueira GM, Araújo AM, Sampieri BR, Mathias MIC, Szabó MPJ, Bechara GH, dos Santos LC, Vilegas W, Pietro RCLR (2012) Acaricidal activity of ethanolic extract from aerial parts of Tagetes patula L. (Asteraceae) against larvae and engorged adult females of Rhipicephalus sanguineus (Latreille, 1806). Parasit Vectors 5:295–306.  https://doi.org/10.1186/1756-3305-5-295 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Prado-Rebolledo O, Molina-Ochoa J, Lezama-Gutiérrez R, García-Márquez L, Minchaca-Llerenas Y, Morales-Barrera E et al (2017) Effect of Metarhizium anisopliae (Ascomycete), cypermethrin, and d-limonene, alone and combined, on larval mortality of Rhipicephalus sanguineus (Acari: Ixodidae). J Med Entomol 54:1323–1327.  https://doi.org/10.1093/jme/tjx092 CrossRefPubMedGoogle Scholar
  44. Rey-Valeirón C, Guzmán L, Saa LR, López-Vargas J, Valarezo E (2017) Acaricidal activity of essential oils of Bursera graveolens (Kunth) Triana & Planch and Schinus molle L. on unengorged larvae of cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J Essent Oil Res 29:344–350.  https://doi.org/10.1080/10412905.2016.1278405 CrossRefGoogle Scholar
  45. Ribeiro VLS, Rolim V, Bordignon S, Henriques AT, Dorneles GG, Limberger RP, Von Poser G (2008) Chemical composition and larvicidal properties of the essential oils from Drimys brasiliensis Miers (Winteraceae) on the cattle tick Rhipicephalus (Boophilus) microplus and the brown dog tick Rhipicephalus sanguineus. Parasitol Res 102:531–535.  https://doi.org/10.1007/s00436-007-0799-x CrossRefPubMedGoogle Scholar
  46. Rodriguez-Vivas RI, Ojeda-Chi MM, Trinidad-Martinez I, Bolio-González ME (2017) First report of amitraz and cypermethrin resistance in Rhipicephalus sanguineus sensu lato infesting dogs in Mexico. Med Vet Entomol 31:72–77.  https://doi.org/10.1111/mve.12207 CrossRefPubMedGoogle Scholar
  47. Sampieri B, Arnosti A, Nunes P, Furquim K, Chierice G, Mathias M (2012) Ultrastructural changes in the ovary cells of engorged Rhipicephalus sanguineus female ticks treated with esters of ricinoleic acid from castor oil (Ricinus communis). Microsc Res Tech 75:683–690.  https://doi.org/10.1002/jemt.21112 CrossRefPubMedGoogle Scholar
  48. Stone B, Haydock K (1962) A method for measuring the acaricide susceptibility of the cattle tick Boophilus microplus (Can.). Bull Entomol Res 53:563–578.  https://doi.org/10.1017/S000748530004832X CrossRefGoogle Scholar
  49. Tene V, Malagón O, Finzi P, Vidari G, Armijos Ch, Zaragoza T (2007) An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J Ethnopharmacol 11:63–81.  https://doi.org/10.1016/j.jep.2006.10.032 CrossRefGoogle Scholar
  50. Vendramini MCR, Mathias MIC, De Faria AU, Furquim KCS, De Souza LP, Bechara GH, Roma GC (2012) Action of andiroba oil (Carapa guianensis) on Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged females: morphophysiological evaluation of reproductive system. Microsc Res Tech 75:1745–1754.  https://doi.org/10.1002/jemt.22126 CrossRefPubMedGoogle Scholar
  51. Wanzala W, Hassanali A, Mukabana W, Takken W (2014) Repellent activities of essential oils of some plants used traditionally to control the brown ear tick, Rhipicephalus appendiculatus. J Parasitol Res.  https://doi.org/10.1155/2014/434506 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wimalaratne P, Slessor K, Borden J, Chong L, Abate T (1996) Isolation and identification of house fly, Musca domestica L., repellents from pepper tree, Schinus molle L. Chem Ecol 22:49–59.  https://doi.org/10.1007/BF02040199 CrossRefGoogle Scholar
  53. Zahed N, Hosni K, Brahim NB, Sebei H (2011) Essential oil composition of Schinus molle L. Fruits: an ornamental species used as condiment. J Food Biochem 35:400–408.  https://doi.org/10.1111/j.1745-4514.2010.00391.x CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratorio de Investigación en Parasitología VeterinariaUniversidad Nacional Experimental Francisco de MirandaIntercomunal Coro-La VelaVenezuela
  2. 2.Postgrado en Sanidad AnimalUniversidad Nacional Experimental Francisco de MirandaCoroVenezuela
  3. 3.Misión NevadoMéridaVenezuela
  4. 4.Departamento de Ciencias Biológicas, sección Biotecnología y ProducciónUniversidad Técnica Particular de LojaLojaEcuador
  5. 5.Departamento de QuímicaUniversidad Técnica Particular de LojaLojaEcuador

Personalised recommendations