Experimental and Applied Acarology

, Volume 75, Issue 4, pp 419–427 | Cite as

Efficacy of plants extracts from the Cerrado against adult female of Dermacentor nitens (Acari: Ixodidae)

  • V. O. Vasconcelos
  • E. G. L. Costa
  • V. R. Moreira
  • F. Morais-Costa
  • E. R. Duarte


Dermacentor nitens tick is commonly found in the equine auditory canal, where it causes economic losses due to its direct damage, causing blood spoliation, stress, transmission of pathogens, and predisposition to myasis and secondary bacterial infection in its hosts. In this study we evaluated the effect of ethanolic extracts of Cerrado plants on biological parameters of engorged females of D. nitens. Ethanolic extracts were prepared from the leaves of Schinopsis brasiliensis, Piptadenia viridiflora, Ximenia americana, and Serjania lethalis at 25–150 mg mL−1. Groups of 10 engorged adult females were treated with these extracts and compared with a control containing distilled water and another control with organophosphate, using five replicates for each group. Compared with the control with water, S. lethalis and X. americana extracts at 100 and 150 mg mL−1 significantly inhibited the posture ability. Differently, extracts of S. brasiliensis and P. viridiflora were the most effective in inhibiting larval hatching. Extracts of X. americana and P. viridiflora showed effective inhibition of reproductive parameters of the tick, presenting dose-dependent effect with IC90 78.86 and 78.94 mg mL−1, respectively. Theses effective extracts contained low condensed tannin levels and their HPLC chromatograms revealed the presence of flavonoids. The efficacies of P. viridiflora and X. americana extracts were higher than 90% indicating that these extracts are promising as alternative agents for D. nitens control.


Alternative control Equine Immersion test Natural acaricide 



The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), and the Foundation for Research Support of Minas Gerais (FAPEMIG).

Compliance with Ethical Standards

Conflict of interest

The authors of this manuscript have no financial or personal relationship with individuals or organizations that could influence or bias the content of the paper.


  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves LM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Zeitsch 22:711–728CrossRefGoogle Scholar
  2. Association of official analytical chemists - (AOAC) (1990) Official methods of analysis. Chemists, ArlingtonGoogle Scholar
  3. Bello ACPP, Cunha AP, Leite RC, Oliveira PR, Ribeiro ACCL, Domingues LN, Freitas CMV, Bastianetto E, Dalla-Rosa RC (2008) Controle de Anocentor nitens (Neumann, 1897) (Acari: Ixodidae) em equinos. R Bras Parasitol Vet 17:59–63CrossRefGoogle Scholar
  4. Benelli G, Pavela R, Canale A, Mehlhorn H (2016) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 115:2545–2560CrossRefPubMedGoogle Scholar
  5. Bennett GF (1974) Oviposition of Boophilus microplus (Canestrini) (Acarida: Ixodidae)—Influence of tick size on egg production. Acarol 16:52–61Google Scholar
  6. Bermúdez SE, Eremeeva ME, Karpathy SE, Samudio F, Zambrano ML, Zaldivar Y, Motta JA, Dasch GA (2009) Detection and identification of rickettsial agents in ticks from domestic mammals in eastern Panama. J Med Entomol 46:856–861CrossRefPubMedGoogle Scholar
  7. Borges LMF, Leite RC (1993) Aspectos biológicos do Dermacentor nitens (Neumann, 1897) em condições de laboratório. Arq Bras Med Vet Zootec 45:586–591Google Scholar
  8. Borges LMF, Oliveira PR, Ribeiro MFB (2000) Seasonal dynamics of Anocentor nitens on horses in Brazil. Vet Parasitol 89:165–171CrossRefPubMedGoogle Scholar
  9. Brasil - Ministério da Agricultura. Portaria n. 90 de 04 de dez de 1989 (1990) Normas para produção, controle e utilização de produtos antiparasitários. Diário Oficial da União, Seção 1, col. 2Google Scholar
  10. Carroll JF, Maradufu A, Warthen JDJ (1989) An extract of Commiphora erythraea: a repellent and toxicant against ticks. Entomol Experiment Applic 53:111–116CrossRefGoogle Scholar
  11. Cetin H, Cilek JE, Oz E, Aydin L, Deveci O, Yanikoglu A (2010) Acaricidal activity of Satureja thymbra L. essential oil and its major components, carvacrol and γ-terpinene against adult Hyalomma marginatum (Acari: Ixodidae). Vet Parasitol 170:287–290CrossRefPubMedGoogle Scholar
  12. Clemente MA, Monteiro CMO, Scoralik MG, Gomes FT, Prata MCA, Daemon E (2010) Acaricidal activity of the essential oils from Eucalyptus citriodora and Cymbopogon nardus on larvae of Amblyomma cajennense (Acari: Ixodidae) and Anocentor nitens (Acari: Ixodidae). Parasitol Res 107:987–992CrossRefPubMedGoogle Scholar
  13. Drummond RO, Ernst SE, Trevino JL, Gladney WJ, Graham OH (1973) Boophilus annulatus and Boophilus microplus: laboratory test of insecticides. J Econ Entomol 66:130–133CrossRefPubMedGoogle Scholar
  14. Fernandes FF, Freitas EPS (2007) Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Boophilus microplus (Acari: Ixodidae). Vet Parasitol 147:150–154CrossRefGoogle Scholar
  15. Fernández-Salas A, Alonso-Díaz MA, Acosta-Rodríguez R, Torres-Acosta JFJ, Sandoval-Castro CA, Rodríguez-Vivas RI (2011) In vitro acaricidal effect of tannin-rich plants against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 175:113–118CrossRefPubMedGoogle Scholar
  16. Gonçalves DD, Carreira T, Nunes M, Benitez A, Lopes-Mori FMR, Vidotto O, Freitas JC, Vieira ML (2013) First record of Borrelia burgdorferi B31 strain in Dermacentor nitens ticks in the northern region of Parana (Brazil). Braz J Microbiol 44:883–887CrossRefPubMedGoogle Scholar
  17. Guglielmone AA, Beati L, Barros-Battesti DM (2006) Ticks (Ixodidae) on humans in South America. Exp Appl Acarol 40:83–100CrossRefPubMedGoogle Scholar
  18. Hiermann A, Kartnig TH, Azzam S (1986) Ein Beitrag zur quantitativen Bestimmung der Procyanidine in Crataegus. Sci Pharm 54:331–337Google Scholar
  19. Joshi AR, Joshi K (2000) Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. J Ethnopharm 73:175–183CrossRefGoogle Scholar
  20. Labruna MB, Kasai N, Ferreira F, Faccini JLH, Gennari SM (2002) Seasonal dynamics of ticks (Acari: Ixodidae) on horses in the state of São Paulo, Brasil. Vet Parasitol 105:65–77CrossRefPubMedGoogle Scholar
  21. Leite RC (1995) Efficacy of doramectin against natural infestations of Boophilus microplus (Canestrini, 1887) (Acari: Ixodidade) in cattle. Rev Bras Parasitol Vet 4:53–56Google Scholar
  22. Lobanov VA, Peckel M, Massard CL, Scandrett WB, Gajadhar AA (2018) Development and validation of a duplex real-time PCR assay for the diagnosis of equine piroplasmosis. Parasites & Vectors 11:125–137CrossRefGoogle Scholar
  23. Madzimure J, Nyahangare ET, Hamudikuwanda H, Hove T, Stevenson PC, Belmain SR, Mvumi BM (2011) Acaricidal efficacy against cattle ticks and acute oral toxicity of Lippia javanica (Burm F.) Spreng. Trop Anim Health Prod 43:481–489CrossRefPubMedGoogle Scholar
  24. Magadum S, Mondal DB, Ghosh S (2009) Comparative efficacy of Annona squamosa and Azadirachta indica extracts against Boophilus microplus Izatnagar isolate. Parasitol Res 105:1085–1091CrossRefPubMedGoogle Scholar
  25. Maikai VA, Maikai BV, Kobo PI (2009) Antimicrobial properties of stem bark extracts of Ximenia americana. J Agric Sci 1:30–34Google Scholar
  26. Martens S, Mithofer A (2005) Flavones and flavone synthases. Phytochem 66:2399–2407CrossRefGoogle Scholar
  27. Matos FJA (2009) Introdução a Fitoquímica. UFC Fortaleza p 150Google Scholar
  28. Morais-Costa F, Soares ACM, Bastos GA, Nunes YRF, Geraseev LC, Braga FC, Lima WS, Duarte ER (2015) Plants of the Cerrado naturally selected by grazing sheep may have potential for inhibiting development of Haemonchus contortus larva. Trop Anim Health Prod 47:1321–1328CrossRefPubMedGoogle Scholar
  29. Morais-Costa F, Bastos GA, Soares ACM, Costa EGL, Vasconcelos VO, Oliveira NJF, Braga FC, Duarte ER, Lima WS (2016) In vitro and in vivo action of Piptadenia viridiflora (Kunth) Benth against Haemonchus contortus in sheep. Vet Parasitol 223:43–49CrossRefPubMedGoogle Scholar
  30. Oliveira AS, Barbosa AS, Gregório TG, Pereira JS, Dantas AA, Junior MBS, Nascimento JS, Silva TBC (2016) Comparação na eficácia de fitoterápicos com carrapaticida deltametrina. Ciênc Vet Trop 19:7–10Google Scholar
  31. Pamo ET, Tendonkeng F, Kana JR, Payne VK, Boukila B, Lemoufouet J (2005) A study of the acaricidal properties of an essential oil extracted from the leaves of Ageratum houstonianum. Vet Parasitol 128:319–323CrossRefGoogle Scholar
  32. Pereira JR, Famadas KM (2006) The efficiency of extracts of Dahlstedtia pentaphylla (Leguminosae, Papilionoidae, Millettiedae) on Boophilus microplus (Canestrini, 1887) in artificially infested bovines. Vet Parasitol 142:192–195CrossRefPubMedGoogle Scholar
  33. Ribeiro VLS, Toigo E, Bordignon SA, Gonçalves K, Von-Poser G (2007) Acaricidal properties of extracts from the aerial parts of Hypericum polyanthemum on the cattle tick Boophilus microplus. Vet Parasitol 147:199–203CrossRefPubMedGoogle Scholar
  34. Ribeiro VLS, Santos JC, Bordignon SAL, Apel MA, Henriques AT, Von-Poser GL (2010) Acaricidal properties of the essential oil from Hesperozygis ringens (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus. Biores Tech 101:2506–2509CrossRefGoogle Scholar
  35. Santos SC, Mello JCP (2003) Taninos. In: Simões CMO, Shenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR (org.) Farmacognosia: da planta ao medicamento, 5 rd edn. Porto Alegre, Florianópolis: pp 615–656Google Scholar
  36. Sardá-Ribeiro VL, Rolim V, Bordignon S, Henriques AT, Dorneles GG, Limberger RP, Von Poser G (2008) Chemical composition and larvicidal properties of the essential oils from Drimys brasiliensis Miers (Winteraceae) on the cattle tick Rhipicephalus (Boophilus) microplus and the brown dog tick Rhipicephalus sanguineus. Parasitol Res 102:531–535CrossRefGoogle Scholar
  37. Schwint NO, Knowles DP, Ueti MW, Kappmeyer LS, Scoles GA (2008) Transmission of Babesia caballi by Dermacentor nitens (Acari: Ixodidae) Is Restricted to One Generation in the Absence of Alimentary Reinfection on a Susceptible Equine Host. J Med Entomol 45:1152–1155CrossRefPubMedGoogle Scholar
  38. Senra TOS, Zeringota V, Monteiro CMO, Calmon F, Maturano R, Gomes GA, Faza A, Carvalho MG, Daemon E (2013) Assessment of the acaricidal activity of carvacrol, (E)-cinnamaldehyde, trans-anethole, and linalool on larvae of Rhipicephalus microplus and Dermacentor nitens (Acari: Ixodidae). Parasitol Res 112:1461–1466CrossRefGoogle Scholar
  39. Silva Filho ML, Silva LB, Fernandes RM, Lopes GS (2013) Efeito do extrato aquoso e etanólico do angico preto sobre larvas de Rhipicephalus (Boophilus) microplus. Arq Bras Med Vet Zootec 65:637–644CrossRefGoogle Scholar
  40. Silva Júnior MC (2005) 100 árvores do cerrado: guia de campo. Rede de Sementes do Cerrado, Brasília, p 278pGoogle Scholar
  41. Soro TY, Traore F, Sakande J (2009) Analgesic activity of the aqueous extract from Ximenia Americana. Comptes Rendus Biol 332:371–377CrossRefGoogle Scholar
  42. Wellington K, Leboho T, Sakong BM, Adenubi OT, Eloff JN, Fouche G (2017) Further studies on South African plants: Acaricidal activity of organic plant extracts against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 234:10–12CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • V. O. Vasconcelos
    • 1
  • E. G. L. Costa
    • 2
  • V. R. Moreira
    • 3
  • F. Morais-Costa
    • 3
  • E. R. Duarte
    • 3
  1. 1.Universidade Estadual de Montes ClarosMontes ClarosBrazil
  2. 2.Universidade Estadual do Sudoeste da BahiaItapetingaBrazil
  3. 3.Instituto de Ciências AgráriasUniversidade Federal de Minas GeraisMontes ClarosBrazil

Personalised recommendations