Advertisement

Experimental and Applied Acarology

, Volume 75, Issue 1, pp 85–95 | Cite as

Electromagnetic radiation and behavioural response of ticks: an experimental test

  • Blažena Vargová
  • Igor Majláth
  • Juraj Kurimský
  • Roman Cimbala
  • Michal Kosterec
  • Piotr Tryjanowski
  • Łukasz Jankowiak
  • Tomáš Raši
  • Viktória Majláthová
Article

Abstract

Factors associated with the increased usage of electronic devices, wireless technologies and mobile phones nowadays are present in increasing amounts in our environment. All living organisms are constantly affected by electromagnetic radiation which causes serious environmental pollution. The distribution and density of ticks in natural habitats is influenced by a complex of abiotic and biotic factors. Exposure to radio-frequency electromagnetic field (RF-EMF) constitutes a potential cause altering the presence and distribution of ticks in the environment. Our main objective was to determine the affinity of Dermacentor reticulatus ticks towards RF-EMF exposure. Originally designed and constructed radiation-shielded tube (RST) test was used to test the affinity of ticks under controlled laboratory conditions. All test were performed in an electromagnetic compatibility laboratory in an anechoic chamber. Ticks were irradiated using a Double-Ridged Waveguide Horn Antenna to RF-EMF at 900 and 5000 MHz, 0 MHz was used as control. The RF-EMF exposure to 900 MHz induced a higher concentration of ticks on irradiated arm of RST as opposed to the RF-EMF at 5000 MHz, which caused an escape of ticks to the shielded arm. This study represents the first experimental evidence of RF-EMF preference in D. reticulatus. The projection of obtained results to the natural environment could help assess the risk of tick borne diseases and could be a tool of preventive medicine.

Keywords

Dermacentor reticulatus Electromagnetic field Radiation-shielded tube test 

Notes

Acknowledgement

This work was financially supported by the project: ‘Environmental protection against parasitozoonoses under the influence of global climate and social changes (code IMTS: 26220220116) ‘ of the Research & Development Operational Programme funded by the ERDF (0.4). This project was also funded by VEGA under the grant approved by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, Grant No. 1/0417/14 (0.4), 1/0311/15, and 2/0141/16, Ministry of Education Agency for structural funds of EU in frame of Project No. 26220120055; Slovak Research and Development Agency, the project No. APVV–15–0438.

References

  1. Anderson LE (1993) Biological effects of extremely low-frequency electromagnetic fields: in vivo studies. Am Ind Hyg Assoc J 54:186–196.  https://doi.org/10.1080/15298669391354540 CrossRefPubMedGoogle Scholar
  2. Atli E, Unlü H (2006) The effects of microwave frequency electromagnetic fields on the development of Drosophila melanogaster. Int J Radiat Biol 82:435–441.  https://doi.org/10.1080/09553000600798849 CrossRefPubMedGoogle Scholar
  3. Balmori A (2009) Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology 16:191–199.  https://doi.org/10.1016/j.pathophys.2009.01.007 CrossRefPubMedGoogle Scholar
  4. Balmori A (2015) Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci Total Environ 518:58–60.  https://doi.org/10.1016/j.scitotenv.2015.02.077 CrossRefPubMedGoogle Scholar
  5. Bourin M, Hascoët M (2003) The mouse light/dark box test. Eur J Pharmacol 463:55–65.  https://doi.org/10.1016/S0014-2999(03)01274-3 CrossRefPubMedGoogle Scholar
  6. Carroll JF, Pickens LG (1987) Spectral sensitivity to light of two species of ticks (Acarina: Ixodidae). Ann Entomol Soc Am 80:256–262.  https://doi.org/10.1093/aesa/80.2.256 CrossRefGoogle Scholar
  7. Cheng KB, Cheng TW, Nadaraj RN, Dev VRG, Neelakandan R (2006) Electromagnetic shielding effectiveness of the twill copper woven fabrics. J Reinf Plast Compos 25:699–709.  https://doi.org/10.1177/0731684406060578 CrossRefGoogle Scholar
  8. Cook DM (2002) The theory of the electromagnetic field. Dover Publications, Mineola, New York, 510 ppGoogle Scholar
  9. Cucurachi S, Tamis WLM, Vijver MG, Peijnenburg WJGM, Bolte JFB, de Snoo GR (2013) A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int 51:116–140.  https://doi.org/10.1016/j.envint.2012.10.009 CrossRefPubMedGoogle Scholar
  10. de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A et al (2017) Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol 7:114.  https://doi.org/10.3389/fcimb.2017.00114 PubMedPubMedCentralGoogle Scholar
  11. Eisen L, Eisen RJ, Lane RS (2006) Geographical distribution patterns and habitat suitability models for presence of host-seeking ixodid ticks in dense woodlands of Mendocino County, California. J Med Entomol 43:415–427.  https://doi.org/10.1603/0022-2585(2006)043[0415:GDPAHS]2.0.CO;2 CrossRefPubMedGoogle Scholar
  12. Engels S, Schneider NL, Lefeldt N, Hein CM, Zapka M, Michalik A et al (2014) Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509:353–356.  https://doi.org/10.1038/nature13290 CrossRefPubMedGoogle Scholar
  13. Estrada-Peña A (2003) The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 26:661–671.  https://doi.org/10.1034/j.1600-0587.2003.03530.x CrossRefGoogle Scholar
  14. Estrada-Peña A (2005) Effects of habitat suitability and landscape patterns on tick (Acarina) metapopulation processes. Landsc Ecol 20:529–541.  https://doi.org/10.1007/s10980-004-3318-9 CrossRefGoogle Scholar
  15. Estrada-Peña A, de la Fuente J (2017) Host distribution does not limit the range of the tick Ixodes ricinus but impacts the circulation of transmitted pathogens. Front Cell Infect Microbiol 7:405.  https://doi.org/10.3389/fcimb.2017.00405 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Everaert J, Bauwens D (2007) A possible effect of electromagnetic radiation from mobile phone base stations on the number of breeding house sparrows (Passer domesticus). Electromagn Biol Med 26:63–72.  https://doi.org/10.1080/15368370701205693 CrossRefPubMedGoogle Scholar
  17. Fojt L, Strašák L, Vetterl V, Šmarda J (2004) Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63:337–341.  https://doi.org/10.1016/j.bioelechem.2003.11.010 CrossRefPubMedGoogle Scholar
  18. Földvári G, Široký P, Szekeres S, Majoros G, Sprong H (2016) Dermacentor reticulatus: a vector on the rise. Parasit Vectors 9:314.  https://doi.org/10.1186/s13071-016-1599-x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Korotkov IS, Burenkov MS, Burenkova LA, Pichugin VI, Chunikhin SP, Engovatov VV (1996) The reaction of the tick Hyalomma asiaticum (Acarina, Ixodidae) to 1- to 4-GHz microwaves. Med Parazitol (Mosk) 4:28–31Google Scholar
  20. Korotkov I, La B, Ms B, VIu P (1999) The impact of electromagnetic radiation at microwave frequency (9.8 HhZ)on the embryonic and postembryonic development of the tick Hyalomma asiaticum (Acarina, Ixodidae). Med Parazitol (Mosk) 1:38–42Google Scholar
  21. Krylov VV, Osipova EA, Izyumov YG (2015) Orientational behavior of animals with the geomagnetic field and mechanisms of magnetoreception. Izv Atmos Ocean Phys 51:752–765.  https://doi.org/10.1134/S0001433815070051 CrossRefGoogle Scholar
  22. Lázaro A, Chroni A, Tscheulin T, Devalez J, Matsoukas C, Petanidou T (2016) Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. J Insect Conserv 20:315–324.  https://doi.org/10.1007/s10841-016-9868-8 CrossRefGoogle Scholar
  23. Li S, Heyman P, Cochez C, Simons L, Vanwambeke SO (2012) A multi-level analysis of the relationship between environmental factors and questing Ixodes ricinus dynamics in Belgium. Parasites Vector 5(1):149.  https://doi.org/10.1186/1756-3305-5-149
  24. Malkemper EP, Eder SHK, Begall S, Phillips JB, Winklhofer M, Hart V, Burda H (2015) Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci Rep.  https://doi.org/10.1038/srep09917 PubMedPubMedCentralGoogle Scholar
  25. Mierzejewska EJ, Pawełczyk A, Radkowski M, Welc-Falęciak R, Bajer A (2015) Pathogens vectored by the tick, Dermacentor reticulatus, in endemic regions and zones of expansion in Poland. Parasit Vectors 8:490.  https://doi.org/10.1186/s13071-015-1099-4 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Miller DAB (1991) Huygens’s wave propagation principle corrected. Opt Lett 16:1370–1372.  https://doi.org/10.1364/OL.16.001370 CrossRefPubMedGoogle Scholar
  27. Newland PL, Al Ghamdi MS, Sharkh S, Aonuma H, Jackson CW (2015) Exposure to static electric fields leads to changes in biogenic amine levels in the brains of Drosophila. Proc R Soc B Biol Sci 282:1812.  https://doi.org/10.1098/rspb.2015.1198 CrossRefGoogle Scholar
  28. Nicholls B, Racey PA (2007) Bats avoid radar installations: could electromagnetic fields deter bats from colliding with wind turbines? PLoS ONE 2:e297.  https://doi.org/10.1371/journal.pone.0000297 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Omoya FO, Kelly BA, Akinyosoye FA (2016) Impact of electromagnetic field on the pathogenicity of selected entomopathogenic bacteria (Proteus sp. and Bacillus sp.) on tick (Rhipicephalus decoloratus). Afr J Biotechnol 12. http://www.ajol.info/index.php/ajb/article/view/133907. Accessed 25 April 2016
  30. Panagopoulos DJ, Chavdoula ED, Karabarbounis A, Margaritis LH (2007) Comparison of bioactivity between GSM 900 MHz and DCS 1800 MHz mobile telephony radiation. Electromagn Biol Med 26:33–44.  https://doi.org/10.1080/15368370701205644 CrossRefPubMedGoogle Scholar
  31. Pandir D, Sahingoz R (2014) Magnetic field-induced oxidative stress and DNA damage in Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae. J Pest Sci 87:79–87.  https://doi.org/10.1007/s10340-013-0521-y CrossRefGoogle Scholar
  32. Prato FS, Robertson JA, Desjardins D, Hensel J, Thomas AW (2005) Daily repeated magnetic field shielding induces analgesia in CD-1 mice. Bioelectromagnetics 26:109–117.  https://doi.org/10.1002/bem.20056 CrossRefPubMedGoogle Scholar
  33. Soares SF, Borges LMF (2012) Electrophysiological responses of the olfactory receptors of the tick Amblyomma cajennense (Acari: Ixodidae) to host-related and tick pheromone-related synthetic compounds. Acta Trop 124:192–198.  https://doi.org/10.1016/j.actatropica.2012.08.007 CrossRefPubMedGoogle Scholar
  34. Válková T, Vácha M (2012) How do honeybees use their magnetic compass? Can they see the North? Bull Entomol Res 102:461–467.  https://doi.org/10.1017/S0007485311000824 CrossRefPubMedGoogle Scholar
  35. Vanwambeke SO, Van doninck J, Artois J, Davidson RK, Meyfroidt P, Jore S (2016) Forest classes and tree cover gradient: tick habitat in encroached areas of southern Norway. Exp Appl Acarol 68(3):375–385.  https://doi.org/10.1007/s10493-015-0007-0 CrossRefPubMedGoogle Scholar
  36. Vargová B, Kurimský J, Cimbala R, Kosterec M, Majláth I, Pipová N et al (2017) Ticks and radio-frequency signals: behavioural response of ticks (Dermacentor reticulatus) in a 900 MHz electromagnetic field. Syst Appl Acarol 22:683–693.  https://doi.org/10.11158/saa.22.5.7 CrossRefGoogle Scholar
  37. Xu J, Pan W, Zhang Y, Li Y, Wan G, Chen F et al (2017) Behavioral evidence for a magnetic sense in the oriental armyworm, Mythimna separata. Biol Open.  https://doi.org/10.1242/bio.022954 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Blažena Vargová
    • 1
  • Igor Majláth
    • 2
  • Juraj Kurimský
    • 3
  • Roman Cimbala
    • 3
  • Michal Kosterec
    • 3
  • Piotr Tryjanowski
    • 4
  • Łukasz Jankowiak
    • 5
  • Tomáš Raši
    • 2
  • Viktória Majláthová
    • 1
    • 2
  1. 1.Institute of ParasitologySlovak Academy of SciencesKosiceSlovak Republic
  2. 2.Institute of Biology and EcologyPavol Jozef Safarik University in KosiceKosiceSlovak Republic
  3. 3.Department of Electrical Power Engineering, Faculty of Electrical Engineering and InformaticsTechnical University of KosiceKosiceSlovak Republic
  4. 4.Institute of ZoologyPoznań University of Life SciencesPoznanPoland
  5. 5.Department of Vertebrate Anatomy and ZoologyUniversity of SzczecinSzczecinPoland

Personalised recommendations