Advertisement

Experimental and Applied Acarology

, Volume 74, Issue 3, pp 225–238 | Cite as

A preliminary molecular phylogeny shows Japanese and Austrian populations of the red mite Balaustium murorum (Acari: Trombidiformes: Erythraeidae) to be closely related

  • Shimpei F. Hiruta
  • Satoshi Shimano
  • Minoru Shiba
Article

Abstract

The red mite Balaustium murorum (Hermann) inhabits the Western Palaearctic realm and is well adapted to man-made structures. In Japan, B. murorum had been reported more frequently after the 1980s. A molecular phylogeny based on the nuclear 18S rRNA and mitochondrial COI genes, and including B. murorum individuals from Japan and Austria and representatives of related species from Japan showed four Balaustium species-level lineages in Japan (B. murorum, Balaustium sp. 1, Balaustium sp. 2, Balaustium sp. 3). The B. murorum lineage shared identical 18S sequence and COI haplotype with the Austrian population. Balaustium sp. 1 was detected from the Tokyo and Misaki area (Honshu Island) and was the sister group to B. murorum; the other two lineages inhabited coastal environments of Erimo, Hokkaido Island (Balaustium sp. 2) and Ainan, Shikoku Island (Balaustium sp. 3). The high genetic distances among these four lineages indicate that each lineage is a distinct species, with three of the lineages representing undescribed species. Our results are compatible with the conclusion that B. murorum was introduced to Japan from Europe, although our study did not resolve the polarity or timing of migration events.

Keywords

Red mites Pest Gene sequence Invasive species Japan 

Notes

Acknowledgements

We thank Dr. Tobias Pfingstl (Institute of Zoology, University of Graz, Graz, Austria), and Mr. Motoyuki Miyake (Osaki City Hall, Osaki City, Miyagi), Dr. Toshimasa Mitamura (Fukushima Agricultural Technology Centre, Fukushima City, Fukushima), Dr. Masanori Okanishi (Misaki Marine Biological Station, The University of Tokyo, Misaki, Miura City, Kanagawa), Dr. Hisanori Kohtsuka (Misaki Marine Biological Station, The University of Tokyo, Misaki, Miura City, Kanagawa), Dr. Mamoru Sekifuji (Misaki Marine Biological Station, The University of Tokyo, Misaki, Miura City, Kanagawa), Dr. Takahiro Murakami (Institute of Decision Science for a Sustainable Society, Kyushu University, Fukuoka City, Fukuoka), and for collecting material, and Dr. Matthew H. Dick (Hokkaido University, Hokkaido) for critical comments on the manuscript. This work was supported by a KAKENHI Grant (JP15K07201) from the Japan Society for the Promotion of Science.

References

  1. Abouheif E, Zardoya R, Meyer A (1998) Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. J Mol Evol 47:394–405.  https://doi.org/10.1007/PL00006397 CrossRefPubMedGoogle Scholar
  2. Beron P (2008) Acarorum Catalogus 1. Acariformes: Calyptostomatoidea (Calyptostomatidae), Erythraeoidea (Smarididae, Erythraeidae). Pensoft Publishes and the National Museum of Natural History, SofiaGoogle Scholar
  3. Blagoev GA, deWaard JR, Ratnasingham S, deWaard SL, Lu L, Robertson J, Hebert PD (2016) Untangling taxonomy: a DNA barcode reference library for Canadian spiders. Mol Ecol Resour 16(1):325–341.  https://doi.org/10.1111/1755-0998.12444 CrossRefPubMedGoogle Scholar
  4. Dabert M, Proctor H, Dabert J (2016) Higher-level molecular phylogeny of the water mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae). Mol Phylgent Evol 101:75–90.  https://doi.org/10.1016/j.ympev.2016.05.004 CrossRefGoogle Scholar
  5. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Domes K, Althammer M, Norton RA, Scheu S, Maraun M (2007) The phylogenetic relationship between Astigmata and Oribatida (Acari) as indicated by molecular markers. Exp Appl Acarol 42(3):159–171.  https://doi.org/10.1007/s10493-007-9088-8 CrossRefPubMedGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.2307/2408678 CrossRefPubMedGoogle Scholar
  8. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  9. Grandjean F (1947) Au sujet des Erythroides. Bull Mus Natl Hist Nat Paris 2 Ser 19(4):327–334Google Scholar
  10. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704.  https://doi.org/10.1080/10635150390235520 CrossRefPubMedGoogle Scholar
  11. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  12. Hermann JF (1804) Mémoire Aptérologique. Ouvrage couronné en 1790 par la Société de Histoire Naturelle de Paris–publié. Frederic Louis Hammer, Strasbourg, pp 60–62Google Scholar
  13. Huelsenbeck JP, Ronquist F (2001) MrBayes: a program for the Bayesian inference of phylogeny. Bioinformatics 17:754–755.  https://doi.org/10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  14. Johnson KP, Yoshizawa K, Smith VS (2004) Multiple origins of parasitism in lice. Proc R Soc B Biol Sci 271:1771–1776.  https://doi.org/10.1098/rspb.2004.2798 CrossRefGoogle Scholar
  15. Katoh K, Standy DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  18. Mąkol J (2010) A redescription of Balaustium murorum (Hermann, 1804) (Acari: Prostigmata: Erythraeidae) with notes on related taxa. Ann Zool 60(3):439–454.  https://doi.org/10.3161/000345410X535424 CrossRefGoogle Scholar
  19. Nakashima S (2007) Spatial and temporal analyses of species brought-in as sanitary pests from residents in Kyoto prefecture. Jpn Soc Environ Entomol Zool 18(2):103–114 (in Japanese with English abstract) Google Scholar
  20. Nakashima S, Adachi M, Morimoto Y, Ebina Y, Furui S (1998) Identification tests of sanitary pests from April 1987 to March 1988. Ann Rep Kyoto Prefect Inst Public Health Environ 43:62–64 (in Japanese) Google Scholar
  21. Nylander JAA (2004) MrModeltest, version 2. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  22. Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) System. PLoS ONE 8:e66213.  https://doi.org/10.1371/journal.pone.0066213 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  24. Shiba M (1989) Ecology of Erythraeidae. Life Environ 34:39–45 (in Japanese with English abstract) Google Scholar
  25. Shiba M (2001) Balaustium murorum (Herman). In: Okutani T (ed) Illustrated technical manual for PC in Japan. Japan Pest Control Association, Tokyo, pp 52–57 (in Japanese) Google Scholar
  26. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Swofford DL (2002) PAUP*4.0: phylogenetic analysis using parsimony (* and other methods). Version 4 beta 10. Sinauer Associates, SunderlandGoogle Scholar
  28. Takakura K, Takatsu A (2008) Temporal changes in the density and feeding habits of a terrestrial red mite, Balaustium murorum (Hermann), on a building roof. Jpn Soc Appl Entomol Zool 52(2):87–93.  https://doi.org/10.1303/jjaez.2008.87 (in Japanese with English abstract) CrossRefGoogle Scholar
  29. Wohltmann A (2000) The evolution of life histories in Parasitengona (Acari: Prostigmata). Acarologia 41:145–204Google Scholar
  30. Yamaguchi S, Endo K (2003) Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implication for its origin and diversification. Mar Biol 143(1):23–38.  https://doi.org/10.1007/s00227-003-1062-3 CrossRefGoogle Scholar
  31. Yoder JA, Rigsby CM, Tank JL (2008) Function of the urnulae in protecting the red velvet mite, Balaustium sp., against water loss and in enhancing its activity at high temperatures. Int J Acarol 34(4):419–425.  https://doi.org/10.1080/17088180809434786 CrossRefGoogle Scholar
  32. Yoder JA, Jajack AJ, Tomko PM, Rosselot AE, Gribbins KM, Benoit JB (2012) Pollen feeding in Balaustium murorum (Acari: Erythraeidae): visualization and behaviour. Int J Acarol 38(8):641–647.  https://doi.org/10.1080/01647954.2012.733024 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Molecular Biodiversity ResearchNational Museum of Nature and ScienceTsukubaJapan
  2. 2.Hosei UniversityTokyoJapan
  3. 3.Matsuyama Shinonome Junior CollegeMatsuyamaJapan

Personalised recommendations