Experimental and Applied Acarology

, Volume 72, Issue 3, pp 277–289 | Cite as

Molecular survey of Coxiella burnetii in wildlife and ticks at wildlife–livestock interfaces in Kenya

  • David Ndeereh
  • Gerald Muchemi
  • Andrew Thaiyah
  • Moses Otiende
  • Samer Angelone-Alasaad
  • Michael J. Jowers
Article

Abstract

Coxiella burnetii is the causative agent of Q fever, a zoonotic disease of public health importance. The role of wildlife and their ticks in the epidemiology of C. burnetii in Kenya is unknown. This study analysed the occurrence and prevalence of the pathogen in wildlife and their ticks at two unique wildlife–livestock interfaces of Laikipia and Maasai Mara National Reserve (MMNR) with the aim to determine the potential risk of transmission to livestock and humans. Blood from 79 and 73 animals in Laikipia and MMNR, respectively, and 756 and 95 ixodid ticks in each of the areas, respectively, was analysed. Ticks were pooled before analyses into 137 and 29 samples in Laikipia and MMNR, respectively, of one to eight non-engorged ticks according to species and animal host. Real-time PCR amplifying the repetitive insertion element IS1111a of the transposase gene was used to detect C. burnetii DNA. Although none of the animals and ticks from MMNR tested positive, ticks from Laikipia had an overall pooled prevalence of 2.92% resulting in a maximum-likelihood estimate of prevalence of 0.54%, 95% CI 0.17–1.24. Ticks positive for C. burnetii DNA belonged to the genus Rhipicephalus at a pooled prevalence of 2.96% (maximum-likelihood estimate of prevalence of 0.54%, 95% CI 0.17–1.26). These ticks were Rhipicephalus appendiculatus, R. pulchellus and R. evertsi at pooled prevalence of 3.77, 3.03 and 2.04%, respectively. The presence of C. burnetii in ticks suggests circulation of the pathogen in Laikipia and demonstrates they may play a potential role in the epidemiology of Q fever in this ecosystem. The findings warrant further studies to understand the presence of C. burnetii in domestic animals and their ticks within both study areas.

Keywords

Q fever Coxiella burnetii Kenya Wildlife 

Supplementary material

10493_2017_146_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Aktas M (2014) A survey of ixodid tick species and molecular identification of tick-borne pathogens. Vet Parasitol 200(3–4):276–283CrossRefPubMedGoogle Scholar
  2. Al-Soud WA, Jonsson LJ, Radstrom P (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38(1):345–350. doi:10.1016/j.vetpar.2013.12.008 PubMedPubMedCentralGoogle Scholar
  3. Ari MD, Guracha A, Fadeel MA, Njuguna C, Njenga MK, Kalani R, Abdi H, Warfu O, Omballa V, Tetteh C, Breiman RF, Pimentel G, Feikin DR (2011) Challenges of establishing the correct diagnosis of outbreaks of acute febrile illnesses in Africa: the case of a likely Brucella outbreak among nomadic pastoralists, northeast Kenya, March–July 2005. Am J Trop Med Hyg 85(5):909–912. doi:10.4269/ajtmh.2011.11-0030 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barandika JF, Hurtado A, Garcia-Esteban C, Gil H, Escudero R, Barral M, Jado I, Juste RA, Anda P, Garcia-Perez AL (2007) Tick-borne zoonotic bacteria in wild and domestic small mammals in northern Spain. Appl Environ Microbiol 73(19):6166–6171. doi:10.1128/AEM.00590-07 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barghash SM, Hafez AA, Darwish AM, El-Naga TRA (2016) Molecular detection of pathogens in ticks infesting camels in Matrouh Governorate, Egypt. J Bacteriol Parasitol 7:259. doi:10.4172/2155-9597.1000269 CrossRefGoogle Scholar
  6. Brah S, Daou M, Salissou L, Mahaman SA, Alhousseini D, Amelie IB, Moussa S, Malam-Abdou B, Adamou H, Adehossi E (2015) Fever of unknown origin in Africa: the causes are often determined. Health Sci Dis 16(2). http://www.hsd-fmsb.org/. Accessed 22 Mar 2016
  7. Cameron AR (1999) Survey toolbox for livestock diseases: a practical manual and software package for active surveillance of livestock diseases in developing countries. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  8. Cowling DW, Gardner IA, Johnson WO (1999) Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev Vet Med 39:211–225CrossRefPubMedGoogle Scholar
  9. DePuy W, Benka V, Massey A, Deem SL, Kinnaird M, O’Brien T, Wanyoike S, Njoka J, Butt B, Foufopoulos J, Eisenberg JNS, Hardin R (2014) Short communication: Q fever risk across a dynamic, heterogeneous landscape in Laikipia County, Kenya. EcoHealth. doi:10.1007/s10393-014-0924-0 PubMedGoogle Scholar
  10. Fournier PE, Raoult D (2003) Comparison of PCR and serology assays for early diagnosis of acute Q fever. J Clin Microbiol 41(11):5094–5098. doi:10.1128/JCM.41.11.5094-5098.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gardon J, Heraud JM, Laventure S, Ladam A, Capot P, Fouquet E, Favre J, Weber S, Hommel D, Hulin A, Couratte Y, Talarmin A (2001) Suburban transmission of Q fever in French Guiana: evidence of a wild reservoir. J Infect Dis 184:278–284. doi:10.1086/322034 CrossRefPubMedGoogle Scholar
  12. Jones RM, Nicas M, Hubbard AE, Reingold AL (2006) The infectious dose of Coxiella burnetii (Q fever). Appl Biosaf 11(1):32–41. doi:10.1177/153567600601100106 CrossRefGoogle Scholar
  13. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993. doi:10.1038/nature06536 CrossRefPubMedGoogle Scholar
  14. Kamani J, Baneth G, Mumcuoglu KY, Waziri NE, Eyal O, Guthmann Y, Harrus S (2013) Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl Trop Dis 7(3):e2108. doi:10.1371/journal.pntd.0002108 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. doi:10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Keesing F, Allan BF, Young TP, Ostfeld RS (2013) Effects of wildlife and cattle on tick abundance in central Kenya. Ecol Appl 23(6):1410–1418. doi:10.1890/12-1607.1 CrossRefPubMedGoogle Scholar
  17. Kersh GJ, Lambourn DM, Raverty SA, Fitzpatrick KA, Self JS, Akmajian AM, Jeffries SJ, Huggins J, Drew CP, Zaki SR, Massung RF (2012) Coxiella burnetii infection of marine mammals in the pacific northwest, 1997–2010. J Wildl Dis 48(1):201–206. doi:10.7589/0090-3558-48.1.201 CrossRefPubMedGoogle Scholar
  18. Kirkan F, Kaya O, Tekbiyik S, Parin U (2008) Detection of Coxiella burnetii in cattle by PCR. Turk J Vet Anim Sci 32(3):215–220Google Scholar
  19. Knobel DL, Maina AN, Cutler SJ, Ogola E, Feikin DR, Junghae M, Halliday JE, Richards AL, Breiman RF, Cleaveland S, Njenga MK (2013) Coxiella burnetii in humans, domestic ruminants and ticks in rural western Kenya. Am J Trop Med Hyg 88:513–518. doi:10.4269/ajtmh.12-0169 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kumsa B, Socolovschi C, Almeras L, Raoult D, Parola P (2015) occurrence and genotyping of Coxiella burnetii in ixodid ticks in Oromia, Ethiopia. Am J Trop Med Hyg 93(5):1074–1081. doi:10.4269/ajtmh.14-0758 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Marrie TJ (2009) Q fever. In: Brachman PS, Elias A (eds) Bacterial infections of humans: epidemiology and control, 4th edn. Springer, New York, pp 643–660. doi:10.1007/978-0-387-09843-2_30 CrossRefGoogle Scholar
  22. Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12 (4): 518–553. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC88923/
  23. McKenzie AA (1993) The capture and care manual: capture, care, accommodation and transportation of wild African animals. South African Veterinary Foundation, PretoriaGoogle Scholar
  24. McQuiston JH, Childs JE, Thompson HA (2002) Zoonosis update- Q fever. J Am Vet Med Assoc 221(6):796–799CrossRefPubMedGoogle Scholar
  25. Mediannikov O, Fenolla F, Socoloschi C, Diatta G, Bassene H, Molez F, Sokhna C, Trape JF, Raoult D (2010) Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl Trop Dis 4(4):e654. doi:10.1371/journal.pntd.0000654 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Porter SR, Czaplicki G, Mainil J, Guatteo R, Saegerman C (2011) Q fever: current state of knowledge and perspectives of research of a neglected zoonosis. Int J Microbiol. doi:10.1155/2011/248418 PubMedPubMedCentralGoogle Scholar
  27. Potasman I, Rzotkiewicz S, Pick N, Keysary A (2000) Outbreak of Q fever following a safari trip. Clin Infect Dis 30:214–215CrossRefPubMedGoogle Scholar
  28. Reid RS, Rainy M, Ogutu J, Kruska RL, McCartney M, Nyabenge M, Kimani K, Kshatriy M, Worden J, Nganga L, Owuor J, Kinoti J, Njuguna E, Wilson CJ, Lamprey R (2003) People, wildlife and livestock in the Mara ecosystem: The Mara count 2002 report. International Livestock Research Institute, NairobiGoogle Scholar
  29. Roest HIJ, Ruuls RC, Tilburg JJHC, Nabuurs-Franssen MH, Klaassen CHW, Vellema P, van den Brom R, Dercksen D, Wouda W, Spierenburg MAH, van der Spek AN, Buijs R (2011) molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. Emerg Infect Dis 17(4):668–675. doi:10.3201/eid1704.101562 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schneeberger PM, Hermans MHA, van Hannen EJ, Schellekens JJA, Leenders ACAP, Wever PC (2010) Real-time PCR with serum samples is indispensable for early diagnosis of acute Q fever. Clin Vaccine Immunol 17(2):286–290. doi:10.1128/CVI.00454-09 CrossRefPubMedGoogle Scholar
  31. Speybroeck N, Williams CJ, Lafia KB, Devleesschauwer B, Berkvens D (2012) Estimating the prevalence of infections in vector populations using pools of samples. Med Vet Entomol 26:361–371. doi:10.1111/j.1365-2915.2012.01015.x CrossRefPubMedGoogle Scholar
  32. Tokarz R, Kapoor V, Samuel JE, Bouyer DH, Briese T, Lipkin WI (2009) Detection of tick-borne pathogens by masstag polymerase chain reaction. Vector Borne Zoonotic Dis 9(2):147–151. doi:10.1089/vbz.2008.0088 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Vanderburg S, Rubach MP, Halliday JEB, Cleaveland S, Reddy EA, Crump JA (2014) Epidemiology of Coxiella burnetii infection in Africa: a one health systematic review. PLoS Negl Trop Dis 8(4):e2787. doi:10.1371/journal.pntd.0002787 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Walker AR, Bouattour A, Camicas JL, Estrada-Pena A, Horak IG, Latif AA, Pegram RG, Preston PM (2003) Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports, Edinburgh, ScotlandGoogle Scholar
  35. Wambuguh O (2007) Interactions between humans and wildlife: landowner experiences regarding wildlife damage, ownership and benefits in Laikipia District, Kenya. Conservat Soc 5(3):408–428Google Scholar
  36. Wambwa E (2003) Diseases of importance at the wildlife/livestock interface in Kenya. In: Osofsky SA (ed) Conservation and development interventions at the wildlife/livestock interface- implications for wildlife, livestock and human health. Proceedings of the Southern and East African experts panel on designing successful conservation and development interventions at the wildlife/livestock interface: Implications for wildlife, livestock and human health, AHEAD (Animal Health for the Environment And Development) forum, IUCN Vth World Parks Congress, Durban, South Africa, pp 21–25Google Scholar
  37. Wardrop NA, Thomas LF, Cook EAJ, de Glanville WA, Atkinson PM, Wamae CN, Fevre EM (2016) The Sero-epidemiology of Coxiella burnetii in humans and cattle, western Kenya: evidence from a cross-sectional study. PLoS Negl Trop Dis 10(10):e0005032. doi:10.1371/journal.pntd.0005032 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wielders CCH, Wijnbergen PCA, Renders NHM, Schellekens JJA, Schneeberger PM, Wever PC, Hermans MHA (2013) High Coxiella burnetii DNA load in serum during acute Q fever is associated with progression to a serologic profile indicative of chronic Q fever. J Clin Microbiol 51(10):3192–3198. doi:10.1128/JCM.00993-13 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Williams CJ, Moffitt CM (2001) A critique of methods of sampling and reporting pathogens in populations of fish. J Aquat Anim Health 13:300–309. doi:10.1577/1548-8667(2001)013<0300:ACOMOS>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • David Ndeereh
    • 1
  • Gerald Muchemi
    • 2
  • Andrew Thaiyah
    • 3
  • Moses Otiende
    • 1
  • Samer Angelone-Alasaad
    • 4
  • Michael J. Jowers
    • 5
    • 6
  1. 1.Department of Veterinary ServicesKenya Wildlife ServiceNairobiKenya
  2. 2.Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary MedicineUniversity of NairobiNairobiKenya
  3. 3.Department of Clinical Studies, Faculty of Veterinary MedicineUniversity of NairobiNairobiKenya
  4. 4.Institute of Evolutionary Biology and Environmental Studies (IEU)University of ZürichZurichSwitzerland
  5. 5.CIBIO/InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos)Universidade do PortoVairãoPortugal
  6. 6.National Institute of EcologyMaseo-myeon, Seocheon-gunKorea

Personalised recommendations