Advertisement

Experimental and Applied Acarology

, Volume 70, Issue 1, pp 69–78 | Cite as

Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae)

  • C. Navarro-Campos
  • F. L. Wäckers
  • A. Pekas
Article

Abstract

The soil-dwelling predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Mesostigmata: Laelapidae) are important biocontrol agents of several pests (Astigmata, Thysanoptera, Diptera). There is little information regarding the use of factitious foods that potentially improve their mass rearing and population development once released in the field. Here we tested the suitability of several types of factitious food and prey for G. aculeifer and S. scimitus. Factitious foods included eggs of Ephestia kuehniella (Lepidoptera: Pyralidae), hydrated encapsulated cysts of the brine shrimp Artemia sp. (Anostraca: Artemiidae), two species of saprophytic nematodes (Panagrellus redivivus and Panagrellus sp.) (Nematoda: Panagrolaimidae) and pollen of cattail Typha angustifolia (Poales: Typhaceae). Parameters tested were oviposition over a 3-day period compared with controls provided with either second instars of the thrips Frankliniella occidentalis (Thysanoptera: Thripidae) or a mix of instars of the commercially used prey mite Tyrophagus putrescentiae (Astigmatina: Acaridae) or the absence of food. Compared to the standard prey mite T. putrescentiae, G. aculeifer showed elevated oviposition when fed thrips larvae, E. kuehniella eggs, Artemia sp. cysts or the saprophytic P. redivivus. Oviposition by S. scimitus was high when provided with thrips larvae and P. redivivus, but not significantly different from oviposition on T. putrescentiae. Oviposition for both predatory mite species was very low or zero when provided with T. angustifolia pollen. Finally, G. aculeifer consumed significantly more thrips larvae than S. scimitus. The implication of these results for the mass-rearing of G. aculeifer and S. scimitus are discussed.

Keywords

Biological control Soil predatory mites Nematodes Frankliniella occidentalis Artemia cysts Ephestia kuehniella 

Notes

Acknowledgments

This research was supported by the European grant FP7-IAPP #324475 ‘Colbics’. We would like to thank Nancy Lenaerts, Peggy Bogaerts and Ilse Jacobs for help with the trial preparation and thrips rearing and Dominiek Vangansbeke for useful comments on a previous version of the manuscript.

References

  1. Arijs Y, De Clercq P (2001) Rearing Orius laevigatus on cysts of the brine shrimp Artemia franciscana. Biol Control 21:79–83. doi: 10.1006/bcon.2000.0910 CrossRefGoogle Scholar
  2. Arzone A, Alma A, Rapetti S (1989) Frankliniella occidentalis (Perg.) (Thysanoptera: Thripidae) nuovo fitomizo delle serre in Italia. Informatore Fitopatologico 10:3–4Google Scholar
  3. Beaulieu F (2009) Review of the mite genus Gaeolaelaps Evans & Till (Acari: Laelapidae), and description of a new species from North America, G. gillespiei n. sp. Zootaxa 49:33–49Google Scholar
  4. Berndt O, Meyhöfer R, Poehling H-M (2004a) The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biol Control 30:17–24. doi: 10.1016/j.biocontrol.2003.09.009 CrossRefGoogle Scholar
  5. Berndt O, Poehling H-M, Meyhöfer R (2004b) Predation capacity of two predatory laelapid mites on soil-dwelling thrips stages. Entomol Exp Appl 112:107–115. doi: 10.1111/j.0013-8703.2004.00185.x CrossRefGoogle Scholar
  6. Buryn R, Brandl R (1992) Are the morphometrics of chelicerae correlated with diet in mesostigmatid mites (Acari)? Exp Appl Acarol 14:67–82. doi: 10.1007/BF01205353 CrossRefGoogle Scholar
  7. Cabrera AR, Cloyd RA, Zaborski ER (2005) Development and reproduction of Stratiolaelaps scimitus (Acari: Laelapidae) with fungus gnat larvae (Diptera: Sciaridae), potworms (Oligochaeta: Enchytraeidae) or Sancassania aff. sphaerogaster (Acari: Acaridae) as the sole food source. Exp Appl Acarol 36:71–81. doi: 10.1007/s10493-005-0242-x CrossRefPubMedGoogle Scholar
  8. Castañé C, Quero R, Riudavets J (2006) The brine shrimp Artemia sp. as alternative prey for rearing the predatory bug Macrolophus caliginosus. Biol Control 38:405–412. doi: 10.1016/j.biocontrol.2006.04.011 CrossRefGoogle Scholar
  9. Conover R (1996) Factors affecting the assimilation of organic matter by zooplankton and the question of superfluous feeding. Limnol Ocean 11:346–354CrossRefGoogle Scholar
  10. Contreras J, Lacasa A, Lorca M, Sánchez JA, Martínez MC (1996) Localización de la ninfosis de Frankliniella occidentalis (Pergande) en los cultivos de habas de verdeo. Bol San Veg Plagas 22:351–360Google Scholar
  11. De Clercq P, Arijs Y, Van Meir T et al (2005) Nutritional value of brine shrimp cysts as a factitious food for Orius laevigatus (Heteroptera: Anthocoridae). Biocontrol Sci Technol 15:467–479. doi: 10.1080/09583150500086706 CrossRefGoogle Scholar
  12. De Clercq P, Courdon TA, Riddick EW (2014) Production of heteropteran predators. In: Morales-Ramos J, Rojas M, Shapiro-Ilan D (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Elsevier, New York, pp 57–100CrossRefGoogle Scholar
  13. Duarte MVA, Venzon M, Bittencourt MCS et al (2015) Alternative food promotes broad mite control on chilli pepper plants. Biocontrol. doi: 10.1007/s10526-015-9688-x Google Scholar
  14. Enkegaard A, Sardar MA, Brødsgaard HF (1997) The predatory mite Hypoaspis miles: biological and demographic characteristics on two prey species, the mushroom sciarid fly, Lycoriella solani, and the mould mite, Tyrophagus putrescentiae. Entomol Exp Appl 82:135–146. doi: 10.1023/A:1002965115865 CrossRefGoogle Scholar
  15. Evans Go (1992) Principles of acarology. CABI Publishing, WallingfordGoogle Scholar
  16. Fernandez-Caldas E, Iraola V, Carnés J (2007) Molecular and biochemical properties of storage mites (except Blomia species)Google Scholar
  17. Ferragut F, Garcia-Mari F, Costa-Comelles J, Laborda R (1987) Influence of food and temperature on development and oviposition of Euseius stipulatus and Typhlodromus phialatus (Acari: Phytoseiidae). Exp Appl Acarol 3:317–329. doi: 10.1007/BF01193168 CrossRefGoogle Scholar
  18. Freire RAP, de Moraes GJ, Silva ES et al (2007) Biological control of Bradysia matogrossensis (Diptera: Sciaridae) in mushroom cultivation with predatory mites. Exp Appl Acarol 42:87–93. doi: 10.1007/s10493-007-9075-0 CrossRefPubMedGoogle Scholar
  19. Gerson U, Weintraub PG (2007) Mites for the control of pests in protected cultivation. Pest Manag Sci 63:658–676CrossRefPubMedGoogle Scholar
  20. Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell, OxfordCrossRefGoogle Scholar
  21. Gillespie DG, Quiring DMJ (1990) Biological control of fungus gnats, Bradysia spp. (Diptera: Sciaridae), and western flower thrips, Frankliniella occidentals (Pergande) (Thysanoptera: Thripidae), in greenhouses using a soil-dwelling predatory mite, Geolaelaps sp. nr. aculeifer Canestrini. Can Entomol 122:975–983Google Scholar
  22. Grenier S, De Clercq P (2003) Comparison of artificially vs. naturally reared natural enemies and their potential for use in biological control. In: van Lenteren JC (ed) Quality control and production of biological control agents. Theory and testing procedures. CABI Publishing, Wallingford, pp 115–131CrossRefGoogle Scholar
  23. Hoogerbrugge H, van Houten Y, van Baal E, Blockmans K (2008) Alternative food sources to enable establishment of Amblyseius swirskii (Athias-Henriot) on chrysanthemum without pest presence. IOBC WPRS Bull 32:79–82Google Scholar
  24. Hoy MA (2011) Agricultural acarology: introduction to integrated mite management. CRC Press, FloridaCrossRefGoogle Scholar
  25. Ignatowicz S (1974) Observations on the biology and development of Hypoaspis aculeifer Canestrini, 1885 (Acarina: Gamasides). Zool Pol 24:41–59Google Scholar
  26. Koehler HH (1997) Mesostigmata (Gamasina, Uropodina), efficient predators in agroecosystems. Agric Ecosyst Environ 62:105–117. doi: 10.1016/S0167-8809(96)01141-3 CrossRefGoogle Scholar
  27. Lesna I, Sabelis MW, Bolland HR, Conijn CGM (1995) Candidate natural enemies for control of Rhizoglyphus robini Claparede (Acari: Astigmata) in lily bulbs: exploration in the field and pre-selection in the laboratory. Exp Appl Acarol 19:655–669. doi: 10.1007/BF00145254 CrossRefGoogle Scholar
  28. Lobbes P, Schotten C (1980) Capacities of increase of the soil mite Hypoaspis aculeifer Canestrini (Mesostigmata: Laelapidae). Z Angew Entomol 90:9–22CrossRefGoogle Scholar
  29. Marullo R, Tremblay E (1993) Le specie italiane del genere Frankliniella Karny. Informatore Fitopatologico 11:37–44Google Scholar
  30. Moreira GF, Morais MR, Busoli AC, Moraes G (2014) Life cycle of Cosmolaelaps jaboticabalensis (Acari: Mesostigmata: Laelapidae) on Frankliniella occidentalis (Thysanoptera: Thripidae) and two factitious food sources. Exp Appl Acarol 65:219–226CrossRefPubMedGoogle Scholar
  31. Morse JG, Hoddle MS (2006) Invasion biology of thrips. Annu Rev Entomol 51:67–89CrossRefPubMedGoogle Scholar
  32. Mound LA, Jackman DJ (1998) Thrips in the economy and ecology of Australia. En: pest management—future challenges. In: Zalucki MP, Drew RAI, White GG (eds) Proceedings of the sixth Australian applied entomological research conference. University of Queensland, St Lucia, pp 472–478Google Scholar
  33. Navarro-Campos C, Pekas A, Moraza ML et al (2012) Soil-dwelling predatory mites in citrus: their potential as natural enemies of thrips with special reference to Pezothrips kellyanus (Thysanoptera: Thripidae). Biol Control 63:201–209. doi: 10.1016/j.biocontrol.2012.07.007 CrossRefGoogle Scholar
  34. Nguyen DT, Vangansbeke D, Lü X, De Clercq P (2013) Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets. Biocontrol 58:369–377. doi: 10.1007/s10526-012-9502-y CrossRefGoogle Scholar
  35. Nguyen DT, Vangansbeke D, De Clercq P (2014) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp Appl Acarol 62:181–194. doi: 10.1007/s10493-013-9749-8 CrossRefPubMedGoogle Scholar
  36. Nicoli G, Galazzi D, Mosti M, Burgio G (1991) Embryonic and larval development of Chrysoperla carnea (Steph.) (Neur., Chrysopidae) at different temperature regimes. Bull SROP/WPRS 14:43–49Google Scholar
  37. Overmeer WPJ (1985) Rearing and handling. In: Helle W, Sabelis MW (eds) Spider mites, their biology, natural enemies and control. Elsevier, Amsterdam, pp 162–170Google Scholar
  38. Pijnakker J, Arijs Y, De Souza A et al (2015) The use of Typha angustifolia (cattail) pollen to establish the predatory mites Amblyseius swirskii, Iphiseius degenerans, Euseius ovalis and Euseius gallicus in glasshouse crops. In: 5th Meeting of the working group “Integrated Control of mite pest” from September 8th–10th 2015 in Castelló de la Plana, Spain (in press)Google Scholar
  39. Premachandra WTS, Borgemeister C, Berndt O et al (2003) Combined releases of entomopathogenic nematodes and the predatory mite Hypoaspis aculeifer to control soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biocontrol 48:529–541. doi: 10.1023/A:1025703512113 CrossRefGoogle Scholar
  40. Put K, Bollens T, Wäckers F, Pekas A (2012) Type and spatial distribution of food supplements impact population development and dispersal of the omnivore predator Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae). Biol Control 63:172–180. doi: 10.1016/j.biocontrol.2012.06.011 CrossRefGoogle Scholar
  41. Ragusa S, Zedan MA, Sciacchitano MA (1989) The effects of food from plant and animal sources on the development and egg production of the predaceous mite Hypoaspis aculeifer (Canestrini) (Parasitiformes, Dermanyssidae). Redia 69:481–488Google Scholar
  42. Riddick EW (2009) Benefits and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: a mini-review. Biocontrol 54:325–339. doi: 10.1007/s10526-008-9171-z CrossRefGoogle Scholar
  43. Stuart RR, Gao YL, Lei ZR (2011) Thrips: pests of concern to China and the United States. Agric Sci China 10:867–892. doi: 10.1016/S1671-2927(11)60073-4 CrossRefGoogle Scholar
  44. Vacante V, Cocuzza GE, De Clercq P et al (1997) Development and survival of Orius albidipennis and O. laevigatus (Het.: Anthocoridae) on various diets. Entomophaga 42:493–498CrossRefGoogle Scholar
  45. van Lenteren JC (2003) Commercial availability of biological control agents. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, pp 167–178CrossRefGoogle Scholar
  46. Van Rijn PCJ, Tanigoshi LK (1999) Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Exp Appl Acarol 23:785–802. doi: 10.1023/A:1006227704122 CrossRefGoogle Scholar
  47. Vangansbeke D, Nguyen DT, Audenaert J et al (2014) Performance of the predatory mite Amblydromalus limonicus on factitious foods. Biocontrol 59:67–77. doi: 10.1007/s10526-013-9548-5 CrossRefGoogle Scholar
  48. Vänninen I, Koskula H (2004) Biocontrol of the shore fly Scatella tenuicosta with Hypoaspis miles and H. aculeifer in peat pots. Biocontrol 49:137–152. doi: 10.1023/B:BICO.0000017361.48411.fe CrossRefGoogle Scholar
  49. Vantornhout I, Minnaert H, Tirry L, De Clercq P (2004) Effect of pollen, natural prey and factitious prey on the development of Iphiseius degenerans. Biocontrol 49:627–644. doi: 10.1007/s10526-004-5280-5 CrossRefGoogle Scholar
  50. Wäckers FL (2005) Suitability of (extra) floral nectar, pollen, and honeydew as insect food sources. In: Wäckers FL, van Rijn PC, Bruin J (eds) Plant-provided food for carnivorous insects. Cambridge University Press, Cambridge, pp 17–74CrossRefGoogle Scholar
  51. Walter DE, Campbell NJH (2003) Exotic vs endemic biocontrol agents: Would the real Stratiolaelaps miles (Berlese) (Acari: Mesostigmata: Laelapidae), please stand up? Biol Control 26:253–269. doi: 10.1016/S1049-9644(02)00171-8 CrossRefGoogle Scholar
  52. Walter DE, Proctor HC (1999) Mites: ecology, evolution and behaviour. CABI Publishing, WallingfordGoogle Scholar
  53. Wiethoff J, Poehling H-M, Meyhöfer R (2004) Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Exp Appl Acarol 34:239–261CrossRefPubMedGoogle Scholar
  54. Wright EM, Chambers RJ (1994) The biology of the predatory mite Hypoaspis miles (Acari: Laelapidae), a potential biological control agent of Bradysia paupera (Dipt.: Sciaridae). Entomophaga 39:225–235CrossRefGoogle Scholar
  55. Wu S, Gao Y, Xu X et al (2014) Evaluation of Stratiolaelaps scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Sci Technol 24:1110–1121. doi: 10.1080/09583157.2014.924478 CrossRefGoogle Scholar
  56. Zhang Z (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, WallingfordCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • C. Navarro-Campos
    • 1
    • 2
  • F. L. Wäckers
    • 1
  • A. Pekas
    • 1
    • 2
  1. 1.R&D DepartmentBiobest Belgium N.V.WesterloBelgium
  2. 2.Institut Agroforestal Mediterrani (IAM)Universitat Politècnica de ValènciaValènciaSpain

Personalised recommendations