Experimental and Applied Acarology

, Volume 68, Issue 2, pp 223–226 | Cite as

Prevalence and diversity of human pathogenic rickettsiae in urban versus rural habitats, Hungary

  • Sándor Szekeres
  • Arieke Docters van Leeuwen
  • Krisztina Rigó
  • Mónika Jablonszky
  • Gábor Majoros
  • Hein Sprong
  • Gábor FöldváriEmail author


Tick-borne rickettsioses belong to the important emerging infectious diseases worldwide. We investigated the potential human exposure to rickettsiae by determining their presence in questing ticks collected in an urban park of Budapest and a popular hunting and recreational forest area in southern Hungary. Differences were found in the infectious risk between the two habitats. Rickettsia monacensis and Rickettsia helvetica were identified with sequencing in questing Ixodes ricinus, the only ticks species collected in the city park. Female I. ricinus had a particularly high prevalence of R. helvetica (45 %). Tick community was more diverse in the rural habitat with Dermacentor reticulatus ticks having especially high percentage (58 %) of Rickettsia raoultii infection. We conclude that despite the distinct eco-epidemiological traits, the risk (hazard and exposure) of acquiring human pathogenic rickettsial infections in both the urban and the rural study sites exists.


Rickettsia helvetica Rickettsia monacensis Rickettsia raoultii Urban Recreational area Hungary 



We are grateful to the Gemenc Forest and Game Co. Ltd. who supported our work in the area. This study was partially supported by European Union grant FP7-261504 EDENext and was catalogued by the EDENext Steering Committee ( as EDENext437. G. F. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and an NKB and Research Faculty grants from the Faculty of Veterinary Science, Szent István University. S. Sz. and H. S. were supported by EurNegVec Cost Action TD1303. S. Sz. was supported by the city Council of Hajdúböszörmény, the Campus Hungary Scholarship and TÁMOP-4.2.2.B-10/1-2010-0011.

Compliance with ethical standards

Conflict of interest



  1. de Bruin A, van Leeuwen AD, Jahfari S et al (2015) Vertical transmission of Bartonella schoenbuchensis in Lipoptena cervi. Parasit Vectors 8:176. doi: 10.1186/s13071-015-0764-y PubMedPubMedCentralCrossRefGoogle Scholar
  2. Földvári G, Rigó K, Lakos A (2013) Transmission of Rickettsia slovaca and Rickettsia raoultii by male Dermacentor marginatus and Dermacentor reticulatus ticks to humans. Diagn Microbiol Infect Dis 76:387–389. doi: 10.1016/j.diagmicrobio.2013.03.005 PubMedCrossRefGoogle Scholar
  3. Földvári G, Jahfari S, Rigó K et al (2014) Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in Urban Hedgehogs. Emerg Infect Dis 20:496–498PubMedPubMedCentralCrossRefGoogle Scholar
  4. Fournier P-E, Grunnenberger F, Jaulhac B et al (2000) Evidence of Rickettsia helvetica Infection in Humans, Eastern France. Emerg Infect Dis 6:389–392PubMedPubMedCentralCrossRefGoogle Scholar
  5. Hornok S, Meli ML, Perreten A et al (2010) Molecular investigation of hard ticks (Acari: Ixodidae) and fleas (Siphonaptera: Pulicidae) as potential vectors of rickettsial and mycoplasmal agents. Vet Microbiol 140:98–104. doi: 10.1016/j.vetmic.2009.07.013 PubMedCrossRefGoogle Scholar
  6. Jado I, Oteo JA, Aldámiz M et al (2007) Rickettsia monacensis and Human Disease, Spain. Emerg Infect Dis 13:1405–1407PubMedPubMedCentralCrossRefGoogle Scholar
  7. Jia N, Zheng Y, Huo Q et al (2014) Human Infections with Rickettsia rauoltii, China. Emerg Infect Dis 20:8–10CrossRefGoogle Scholar
  8. Lakos A (1997) Tick-borne lymphadenopathy-a new rickettsial disease? Lancet 350:1006. doi: 10.1016/S0140-6736(05)64072-X PubMedCrossRefGoogle Scholar
  9. Oteo JA, Portillo A (2012) Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis 3:271–278. doi: 10.1016/j.ttbdis.2012.10.035 PubMedCrossRefGoogle Scholar
  10. Rizzoli A, Silaghi C, Obiegala A et al (2014) Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Heal 2:251. doi: 10.3389/fpubh.2014.00251 Google Scholar
  11. Špitalská E, Boldiš V, Derdáková M et al (2014) Rickettsial infection in Ixodes ricinus ticks in urban and natural habitats of Slovakia. Ticks Tick Borne Dis 5:161–165. doi: 10.1016/j.ttbdis.2013.10.002 PubMedCrossRefGoogle Scholar
  12. Stenos J, Graves SR, Unsworth NB (2005) A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group rickettsiae. Am J Trop Med Hyg 73:1083–1085PubMedGoogle Scholar
  13. Szekeres S, Coipan EC, Rigó K et al (2015) Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks Tick Borne Dis 6:111–116. doi: 10.1016/j.ttbdis.2014.10.004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Veterinary ScienceSzent István UniversityBudapestHungary
  2. 2.National Institute of Public Health and EnvironmentBilthovenThe Netherlands

Personalised recommendations