Experimental and Applied Acarology

, Volume 67, Issue 3, pp 441–456 | Cite as

Genetic diversity of Ixodes pavlovskyi and I. persulcatus (Acari: Ixodidae) from the sympatric zone in the south of Western Siberia and Kazakhstan

  • Natalia N. LivanovaEmail author
  • Artem Yu. Tikunov
  • Alexander M. Kurilshikov
  • Stanislav G. Livanov
  • Nataliya V. Fomenko
  • Dmitrii E. Taranenko
  • Anna E. Kvashnina
  • Nina V. Tikunova


The most epidemiologically significant tick species in Siberia involved in transmission of a large number of pathogens causing human infectious diseases is Ixodes persulcatus. Ixodes pavlovskyi, being more active, also poses epidemiological threats. These tick species share morphology, activity seasons and geographic distribution range. In this paper, we characterize the geographic and genetic structures of I. persulcatus and I. pavlovskyi populations inhabiting the southern part of Western Siberia (Russia and Kazakhstan)—the western part of I. pavlovskyi distribution range. The data are based on six distinct Ixodes tick populations. Analysis of the concatenated mitochondrial marker sequences (16S rRNA and COI) and the nuclear sequence (ITS2) showed genetic polymorphisms in both I. persulcatus and I. pavlovskyi ticks inhabiting the sympatric zone. We could not determine the phylogeographic structure of I. pavlovskyi populations whereas for I. persulcatus significant within-region variance was shown. Notably, the abundance of I. persulcatus ticks negatively correlates with nucleotide and haplotype diversity in the concatenated sequence of mitochondrial gene (16S rRNA and COI) fragments. This is the first description of the genetic polymorphism of I. persulcatus and I. pavlovskyi ticks coexisting in a sympatric zone based on analysis of mitochondrial and nuclear markers.


16S rRNA COI ITS2 Ixodes persulcatus Ixodes pavlovskyi Geographical distribution 



The research was supported by the Russian Foundation for Basic Research (15-29-02479 obr_i).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.


  1. Babenko LV, Byelozyrov VN, Filippova NA, Naumov RL, Leonovich SA, Shashina NI (1985) Ecology, in the taiga tick Ixodes persulcatus (Acarina, Ixodidae). Morphology, systematic, ecology, medical importance. Nauka, Leningrad, RussiaGoogle Scholar
  2. Barker S, Murrell A (2003) Phylogeny, evolution and historical zoogeography of ticks: a review of recent progress. Exp Appl Acarol 28:55–68CrossRefGoogle Scholar
  3. Barker S, Murrell A (2004) Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129:15–36. doi: 10.1017/S0031182004005207 CrossRefGoogle Scholar
  4. Black WC 4th, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469CrossRefPubMedGoogle Scholar
  5. Casati S, Bernasconi MV, Gern L, Piffaretti JC (2008) Assessment of intraspecific mtDNA variability of European Ixodes ricinus sensu stricto (Acari: Ixodidae). Infect Genet Evol 8:152–158. doi: 10.1016/j.meegid.2007.11.007 CrossRefPubMedGoogle Scholar
  6. Chausov EV, Ternovoi VA, Protopopova EV, Kononova JV, Konovalova SN, Pershikova NL, Romanenko VN, Ivanova NV, Bolshakova NP, Moskvitina NS, Loktev VB (2010) Variability of the tick-borne encephalitis virus genome in the 5′ noncoding region derived from ticks Ixodes persulcatus and Ixodes pavlovskyi in Western Siberia. Vector Borne Zoonotic Dis 10:365–375. doi: 10.1089/vbz.2009.0064 CrossRefPubMedGoogle Scholar
  7. De Meeûs T, Béati L, Delaye C, Aeschlimann A, Renaud F (2002) Sex-biased genetic structure in the vector of Lyme disease, Ixodes ricinus. Evolution 56:1802–1807CrossRefPubMedGoogle Scholar
  8. Dinnis RE, Seelig F, Bormane A, Donaghy M, Vollmer SA, Feil EJ, Kurtenbach K, Margos G (2014) Multilocus sequence typing using mitochondrial genes (mtMLST) reveals geographic population structure of Ixodes ricinus ticks. Ticks Tick Borne Dis 5:152–160. doi: 10.1016/j.ttbdis CrossRefPubMedGoogle Scholar
  9. Dray DA (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  11. Filippova NA (1977) Fauna of the Soviet Union: arachnids, volume 4, issue 4: Ixodid ticks of the subfamily ixodinae. Nauka, Leningrad, RussiaGoogle Scholar
  12. Fukunaga M, Yabuki M, Hamase A, Hamase A, Oliver JH Jr, Nakao M (2000) Molecular phylogenetic analysis of ixodid ticks based on the ribosomal DNA spacer, internal transcribed spacer 2, sequences. J Parasitol 86:38–43CrossRefPubMedGoogle Scholar
  13. Heyman P, Cochez C, Hofhuis A, Sprong H, Porter S, Losson B, Saegerman C, Donoso-Mantke O, Niedrig M, Papa A (2010) A clear and present danger: tick-borne diseases in Europe. Expert Rev Anti Infect Ther 8:33–50. doi: 10.1586/eri.09.118 CrossRefPubMedGoogle Scholar
  14. Hlinka O, Murrell A, Barker SC (2002) Evolution of the secondary structure of the rRNA internal transcribed spacer 2 (ITS2) in hard ticks (Ixodidae, Arthropoda). Heredity (Edinb) 88:275–279CrossRefGoogle Scholar
  15. Keirans JE (1992) Systematics of the ixodida (Argasidae, Ixodidae, Nuttalliellidae): an overview and some problems. In: Fivaz BH, Petney TN, Horak IG (eds) Tick vector biology: medical and veterinary aspects. Springer, Berlin, pp 1–21CrossRefGoogle Scholar
  16. Keirans JE, Needham G, Oliver J (1999) The Ixodes (Ixodes) ricinus complex worldwide: diagnosis of the species in the complex, hosts and distribution. In: Needham G, Michell R, Horn D, Welbourn W (eds) Acarology I X: symposia. Ohio Biological Survey, Columbus, Ohio, pp 341–347Google Scholar
  17. Kolonin GV, Fauna of ixodid ticks of the world (Acari, Ixodidae), Moscow. Accessed 26 June 2012
  18. Korenberg EI (1985) Borders and type of the area, in the taiga tick Ixodes persulcatus (Acarina, Ixodidae). Morphology, systematics, ecology, medical importance. Nauka, Leningrad, RussiaGoogle Scholar
  19. Korenberg EI, Nefedova VV, Romanenko VN, Gorelova NB (2010) The tick Ixodes pavlovskyi as a host of spirochetes pathogenic for humans and its possible role in the epizootiology and epidemiology of Borrelioses. Vector Borne Zoonotic Dis 10:453–458. doi: 10.1089/vbz.2009.0064 CrossRefPubMedGoogle Scholar
  20. Kovalev SY, Mukhacheva TA (2012) Phylogeographical structure of the tick Ixodes persulcatus: a novel view. Ticks Tick Borne Dis 3:212–218. doi: 10.1016/j.ttbdis.03.005 CrossRefPubMedGoogle Scholar
  21. Leiby D (2011) Transfusion-transmitted Babesia spp.: bulls-eye on Babesia microti. Clin Microbiol Rev 24:14–28. doi: 10.1128/CMR.00022-10 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Livanova NN, Livanov SG, Panov VV (2011) Characteristics of the distribution of ticks Ixodes persulcatus and Ixodes pavlovskyi at the border between the forest and forest-steppe zones in the territory near Ob River. Parazitologiia 45:94–103PubMedGoogle Scholar
  23. Livanova NN, Tikunova NV, Livanov SG, Fomenko NV (2012) Identification of Ixodes persulcatus and Ixodes pavlovskyi occidentalis (Ixodidae) by the analysis of the gene fragment COXI (cytochrome oxidase subunit I). Parazitologiia 46:340–349PubMedGoogle Scholar
  24. Lu X, Linb XD, Wanga JB, Qina XC, Tianc JH, Guoa WP, Fand FN, Shaoe R, Xua J, Zhanga YZ (2013) Molecular survey of hard ticks in endemic areas of tick-borne diseases in China. Ticks Tick Borne Dis. 4:288–296. doi: 10.1016/j.ttbdis CrossRefPubMedGoogle Scholar
  25. Masuzawa T, Masuda S, Fukui T, Okamoto Y, Bataa J, Oikawa Y, Ishiguro F, Takada N (2014) PCR detection of Anaplasma phagocytophilum and Borrelia burgdorferi in Ixodes persulcatus ticks in Mongolia. Jpn J Infect Dis 67:47–49CrossRefPubMedGoogle Scholar
  26. McCoy KD (2008) The population genetic structure of vectors and our understanding of disease epidemiology. Parasite 5:444–448CrossRefGoogle Scholar
  27. McLain DK, Li J, Jr O (2001) Interspecific and geographical variation in the sequence of rDNA expansion segment D3 of Ixodes ticks (Acari: Ixodidae). Heredity (Edinb). 86:234–242CrossRefPubMedGoogle Scholar
  28. Noureddine R, Chauvin A, Plantard O (2011) Lack of genetic structure among Eurasian populations of the tick Ixodes ricinus contrasts with marked divergence from north-African populations. Int J Parasitol 41:183–192. doi: 10.1016/j.ijpara.2010.08.010 CrossRefPubMedGoogle Scholar
  29. Olsson U (2005) Confidence intervals for the mean of a log-normal distribution. J Stat Educ 13,
  30. Poulin R, George-Nascimento M (2007) The scaling of total parasite biomass with host body mass. Int J Parasitol 37:359–364CrossRefPubMedGoogle Scholar
  31. Rar VA, Livanova NN, Panov VV, Doroschenko EK, Pukhovskaya NM, Vysochina NP, Ivanov LI (2010) Genetic diversity of Anaplasma and Ehrlichia in the Asian part of Russia. Ticks Tick Borne Dis 1:57–65. doi: 10.1016/j.ttbdis.01.002 CrossRefPubMedGoogle Scholar
  32. Romanenko VN (2005) The peculiarities of the biology of ticks inhabiting the environs of Tomsk City. Parazitologiia 39:365–370PubMedGoogle Scholar
  33. Shaw M, Murrell A, Barker S (2002) Low intraspecific variation in the rRNA internal transcribed spacer 2 (ITS2) of the Australian paralysis tick, Ixodes holocyclus. Parasitol Res 88:247–252CrossRefPubMedGoogle Scholar
  34. Shpynov S, Fournier PE, Rudakov N, Tarasevich I, Raoult D (2006) Detection of members of the genera Rickettsia, Anaplasma, and Ehrlichia in ticks collected in the Asiatic part of Russia. Ann N Y Acad Sci 1078:378–383CrossRefPubMedGoogle Scholar
  35. Song S, Shao R, Atwell R, Barker S, Vankan D (2011) Phylogenetic and phylogeographic relationships in Ixodes holocyclus and Ixodes cornuatus (Acari: Ixodidae) inferred from COX1 and ITS2 sequences. Int J Parasitol 41:871–880. doi: 10.1016/j.ijpara.2011.03.008 CrossRefPubMedGoogle Scholar
  36. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Taylor KR, Takano A, Konnai S, Shimozuru M, Kawabata H, Tsubota T (2013) Borrelia miyamotoi infections among wild rodents show age and month independence and correlation with Ixodes persulcatus larval attachment in Hokkaido, Japan. Vector Borne Zoonotic Dis 13:92–97. doi: 10.1089/vbz.2012.1027 CrossRefPubMedGoogle Scholar
  38. Tkachev S, Panov V, Dobler G, Tikunova N (2014) First detection of Kemerovo virus in Ixodes pavlovskyi and Ixodes persulcatus ticks collected in Novosibirsk region, Russia. Ticks Tick Borne Dis. doi: 10.1016/j.ttbdis.03.003 PubMedGoogle Scholar
  39. Xu G, Fang QQ, Keirans JE, Durden LA (2003) Molecular phylogenetic analyses indicate that the Ixodes ricinus complex is a paraphyletic group. J Parasitol 89:452–457CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Natalia N. Livanova
    • 1
    • 2
    Email author
  • Artem Yu. Tikunov
    • 2
  • Alexander M. Kurilshikov
    • 2
  • Stanislav G. Livanov
    • 1
  • Nataliya V. Fomenko
    • 2
    • 3
  • Dmitrii E. Taranenko
    • 1
  • Anna E. Kvashnina
    • 4
  • Nina V. Tikunova
    • 2
  1. 1.Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.JSC Vector-BestNovosibirskRussia
  4. 4.Federal Nature Preserve “Denezhkin Kamen”SeverouralskiyRussia

Personalised recommendations