Experimental and Applied Acarology

, Volume 67, Issue 2, pp 219–245 | Cite as

Basal divergence of Eriophyoidea (Acariformes, Eupodina) inferred from combined partial COI and 28S gene sequences and CLSM genital anatomy

  • P. E. Chetverikov
  • T. Cvrković
  • A. Makunin
  • S. Sukhareva
  • B. Vidović
  • R. Petanović
Article

Abstract

Eriophyoids are an ancient group of highly miniaturized, morphologically simplified and diverse phytoparasitic mites. Their possible numerous host-switch events have been accompanied by considerable homoplastic evolution. Although several morphological cladistic and molecular phylogenetic studies attempted to reconstruct phylogeny of Eriophyoidea, the major lineages of eriophyoids, as well as the evolutionary relationships between them, are still poorly understood. New phylogenetically informative data have been provided by the recent discovery of the early derivative pentasetacine genus Loboquintus, and observations on the eriophyoid reproductive anatomy. Herein, we use COI and D1-2 rRNA data of 73 eriophyoid species (including early derivative pentasetacines) from Europe, the Americas and South Africa to reconstruct part of the phylogeny of the superfamily, and infer on the basal divergence of eriophyoid taxa. In addition, a comparative CLSM study of the female internal genitalia was undertaken in order to find putative apomorphies, which can be used to improve the taxonomy of Eriophyoidea. The following molecular clades, marked by differences in genital anatomy and prodorsal shield setation, were found in our analyses: Loboquintus(Pentasetacus((Eriophyidae + Diptilomiopidae)(Phytoptidae-1, Phytoptidae-2))). The results of this study suggest that the superfamily Eriophyoidea comprises basal paraphyletic pentasetacines (Loboquintus and Pentasetacus), and two large monophyletic groups: Eriophyidae s.l. [containing paraphyletic Eriophyidae sensu Amrine et al. 2003 (=Eriophyidae s.str.) and Diptilomiopidae sensu Amrine et al. 2003] and Phytoptidae s.l. [containing monophyletic Phytoptidae sensu Boczek et al. 1989 (=Phytoptidae s.str.) and Nalepellidae sensu Boczek et al. 1989]. Putative morphological apomorphies (including genital and gnathosomal characters) supporting the clades revealed in molecular analyses are briefly discussed.

Keywords

Eriophyoidea Phylogeny Confocal microscopy Reproductive anatomy 

Supplementary material

10493_2015_9945_MOESM1_ESM.tif (29 mb)
Supplementary figure 1.ML tree of mitochondrial COI. Statistical supports indicate ML bootstrap for amino acid dataset/ML bootstrap for nucleotide dataset/Bayesian posterior probabilities for nucleotide dataset. (TIFF 29651 kb)

References

  1. Amrine JW Jr, Manson DCM (1996) Preparation, mounting and descriptive study of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control (World Crop Pests). Elsevier Science, Amsterdam, pp 383–396CrossRefGoogle Scholar
  2. Amrine JW Jr, Stasny TA, Flechtmann CHW (2003) Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). Indira Publishing House, West BloomfieldGoogle Scholar
  3. Bagnjuk IG, Sukhareva SI, Shevchenko VG (1998) Major trends in the evolution of four-legged mites as a specialized group (using families Pentasetacidae Shev., Nalepellidae Roiv. and Phytoptidae Murray (Acari: Tetrapodili) as examples). Acarina 6(1–2):59–76Google Scholar
  4. Baker EW, Kono T, Amrine JW Jr, Delfinado-Baker M, Stasny TA (1996) Eriophyoid mites of the United States. Indira Publishing House, West BloomfieldGoogle Scholar
  5. Boczek J, Shevchenko VG, Davis R (1989) Generic key to world fauna of eriophyoid mites (Acarida: Eriophyoidea). Warsaw Agricultural University Press, WarsawGoogle Scholar
  6. Bouneb M, de Lillo E, Roversi PF, Simoni S (2014) Molecular detection assay of the bud mite Trisetacus juniperinus on Cupressus sempervirens in nurseries of central Italy. Exp Appl Acarol 62(2):161–170CrossRefPubMedGoogle Scholar
  7. Castagnoli M (1973) Contributo alla conoscenza degli acari Eriofidi viventi sul gen. Pinus Italia Redia 54:1–22Google Scholar
  8. Chetverikov PE (2012) Confocal laser scanning microscopy technique for the study of internal genitalia and external morphology of eriophyoid mites (Acari: Eriophyoidea). Zootaxa 3453:56–68Google Scholar
  9. Chetverikov PE (2014a) Distal oviduct and genital chamber of eriophyoids (Acariformes, Eriophyoidea): refined terminology and remarks on CLSM technique for studying musculature of mites. Exp Appl Acarol 64(4):407–428. doi:10.1007/s10493-014-9840-9 CrossRefPubMedGoogle Scholar
  10. Chetverikov PE (2014b) Comparative confocal microscopy of internal genitalia of phytoptine mites (Eriophyoidea, Phytoptidae): new generic diagnoses reflecting host-plant associations. Exp Appl Acarol 62(2):129–160. doi:10.1007/s10493-013-9734-2 CrossRefPubMedGoogle Scholar
  11. Chetverikov PE, Craemer C (2015) Gnathosomal interlocking apparatus and remarks on functional morphology of frontal lobes of eriophyoid mites (Acariformes, Eriophyoidea). Exp Appl Acarol 66(2):187–202. doi:10.1007/s10493-015-9906-3 CrossRefPubMedGoogle Scholar
  12. Chetverikov PE, Beaulieu F, Cvrković T, Vidović B, Petanović R (2012) Oziella sibirica (Eriophyoidea: Phytoptidae), a new eriophyoid mite species described using confocal microscopy and COI barcoding. Zootaxa 3560:41–60Google Scholar
  13. Chetverikov PE, Cvrković T, Vidović B, Petanović RU (2013) Description of a new relict eriophyoid mite, Loboquintus subsquamatus n. gen. & n. sp. (Eriophyoidea, Phytoptidae, Pentasetacini) based on confocal microscopy, SEM, COI barcoding and novel CLSM anatomy of internal genitalia. Exp Appl Acarol 61(1):1–30. doi:10.1007/s10493-013-9685-7 CrossRefPubMedGoogle Scholar
  14. Chetverikov PE, Beaulieu F, Beliavskaia AY, Rautian MS, Sukhareva SI (2014a) Redescription of an early-derivative mite, Pentasetacus araucariae (Eriophyoidea, Phytoptidae), and new hypotheses on the eriophyoid reproductive anatomy. Exp Appl Acarol 63:123–125. doi:10.1007/s10493-014-9774-2 CrossRefPubMedGoogle Scholar
  15. Chetverikov PE, Craemer C, Vishnyakov AE, Sukhareva SI (2014b) CLSM anatomy of internal genitalia of Mackiella reclinata n. sp. and systematic remarks on eriophyoid mites from the tribe Mackiellini Keifer, 1946 (Eriophyoidea, Phytoptidae). Zootaxa 3860(3):261–279CrossRefPubMedGoogle Scholar
  16. Chetverikov PE, Desnitskiy AG, Navia D (2015) Confocal microscopy refines generic concept of a problematic taxon: rediagnosis of the genus Neoprothrix and remarks on female anatomy of eriophyoids (Acari: Eriophyoidea). Zootaxa 3919(1):179–191CrossRefPubMedGoogle Scholar
  17. Craemer C (2010) A systematic appraisal of the Eriophyoidea (Acari: Prostigmata). PhD Dissertation, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa, November 2010Google Scholar
  18. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Method 9(8):772CrossRefGoogle Scholar
  19. Farkas HK (1965) Some problems of eriophyid mites phylogeny (Acarina, Eriophyoidea). Zeszyty Problemowe Posterow Nauk Rolniczych 65:189–194Google Scholar
  20. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294PubMedGoogle Scholar
  21. Gerson U (1996) Secondary associations: Eriophyoid mites on ferns. In: Lindquist EE, Sabelius MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World Crop Pests 6. Elsevier, Amsterdam, pp 227–230CrossRefGoogle Scholar
  22. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  23. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755CrossRefPubMedGoogle Scholar
  24. Keifer HH (1939) Eriophyid studies VI. Bull Calif Dept Agr 28:416–426Google Scholar
  25. Keifer HH (1940) Eriophyid studies VIII. Bull Calif Dept Agr 29(1):21–46Google Scholar
  26. Keifer HH (1966) Eriophyid studies B-20. Bur Ent Calif Dept Agric 1–20Google Scholar
  27. Li H-S, Xue X-F, Hong X-Y (2014) Homoplastic evolution and host association of Eriophyoidea (Acari, Prostigmata) conflict with the morphological-based taxonomic system. Mol Phylogenet Evol 78:185–198. doi:10.1016/j.ympev.2014.05.014 CrossRefPubMedGoogle Scholar
  28. Lindquist EE (1996a) 1.1.1. External anatomy and notation of structures. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World Crop Pests 6. Elsevier Science, Amsterdam, pp 3–31CrossRefGoogle Scholar
  29. Lindquist EE (1996b) 1.5.2 phylogenetic relationships. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World Crop Pests 6. Elsevier Science, Amsterdam, pp 301–327CrossRefGoogle Scholar
  30. Lindquist EE, Amrine JW (1996) 1.1.2 Systematics, diagnoses for major taxa, and keys to families and genera with species on plants of economic importance. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World Crop Pests 6. Elsevier Science, Amsterdam, pp 33–87CrossRefGoogle Scholar
  31. Lindquist EE, Zacharda M (1987) A new genus and species of Rhagidiidae (Acari: Prostigmata) from Chihuahuan Desert litter in New Mexico. Can J Zool 65(9):2149–2158CrossRefGoogle Scholar
  32. Lindquist EE, Krantz GW, Walter DE (2009) Chapter 8. Classification. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Texas, pp 97–103Google Scholar
  33. Loytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. PNAS 102:10557–10562PubMedCentralCrossRefPubMedGoogle Scholar
  34. Müller K (2005) SeqState. Appl bioinform 4(1):65–69CrossRefGoogle Scholar
  35. Nalepa A (1898). Zur Kenntnis der Gattung Trimerus Nal. Zool. Jahrb., Abt. Syst., Geogr., Biol. Tiere, Jena 11(5):405–411Google Scholar
  36. Nuzzaci G, Alberti G (1996) Internal anatomy and physiology. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World Crop Pests 6. Elsevier Science, Amsterdam, pp 101–150CrossRefGoogle Scholar
  37. Roivainen H (1953) Some gall mites (Eriophyidae) from Spain. Arch Inst Aclim 1:9–43Google Scholar
  38. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574CrossRefPubMedGoogle Scholar
  39. Ronquist F, Huelsenbeck JP, van der Mark P (2005) MrBayes v. 3.1 Manual. http://mrbayes.csit.fsu.edu/wiki/index.php/Manual. Accessed 5 Nov 2014
  40. Schliesske J (1985) Zur Verbrietung und Ökologie einer neunen ursprünglichen Gallmilbenart (Acari: Eriophyoidea) an Araucaria araucana (molina) K. Koch Entomologische Mitteilungen zoologische Museum Hamburg 8:97–106Google Scholar
  41. Shevchenko VG, Bagnyuk IG, Sukhareva SI (1991) A new family of Pentasetacidae (Acariformes, Tetrapodili) and its role in treatment of the origin and evolution of the group. Zool Zhurnal 70(5):47–53Google Scholar
  42. Schmidt AR, Janckeb S, Lindquist EE, Ragazzi E, Roghi G, Nascimbene PC, Schmidt KTW, Grimaldi DA (2012) Arthropods in amber from the Triassic Period. Proc Natl Acad Sci USA 109(37):14796–14801Google Scholar
  43. Sidorchuk EA, Schmidt AR, Ragazzi E, Roghi G, Lindquist EE (2014) Plant-feeding mite diversity in triassic amber (Acari: Tetrapodili). J Syst Paleontol. doi:10.1080/14772019.2013.867373 Google Scholar
  44. Silvestro D, Michalak I (2011) raxmlGUI: a graphical front-end for RAxML. Organ Divers Evol. doi:10.1007/s13127-011-0056-0 Google Scholar
  45. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49(2):369–381CrossRefPubMedGoogle Scholar
  46. Skoracka A, Dabert M (2010) The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bull Entomol Res 100(3):263–272CrossRefPubMedGoogle Scholar
  47. Skoracka A, Kuczynski L, de Mendonca R, Dabert M, Szydlo W, Knihinicki D, Truol G, Navia D (2012) Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari, Eriophyoidea) revealed by mitochondrial, nuclear and morphometric data. Invertebr Syst 26:417–433CrossRefGoogle Scholar
  48. Skoracka A, Kuczyński L, Rector B, Amrine JW Jr (2014) Wheat curl mite and dry bulb mite: untangling a taxonomic conundrum through a multidisciplinary approach. Biol J Linnean Soc 111:421–436CrossRefGoogle Scholar
  49. Sonnenberg R, Nolte AW, Tautz D (2007) An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Front Zool 4(1):6PubMedCentralCrossRefPubMedGoogle Scholar
  50. Stekolnikov AA, Carranza S, Gomez-Diaz E (2012) A new genus and species of Apoloniinae (Acari: Trombiculidae) from Oman. Zootaxa 3499:74–80Google Scholar
  51. Sukhareva SI (1994) Family Phytoptidae Murray 1877 (Acari: Tetrapodili), its consisting, structure and suggested ways of evolution. Acarina 2(1–2):47–72Google Scholar
  52. Takhtajan AL (1959) Die evolution der angiospermen. Jena 344 SeitenGoogle Scholar
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralCrossRefPubMedGoogle Scholar
  54. Walter DE (2009) Chapter 14. suborder endeostigmata. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Texas, pp. 421–429Google Scholar
  55. Walter DE, Lindquist EE, Smith IM, Cook DR, Krantz GW (2009) Chapter 13. Order trombidiformes. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Texas, pp. 233–420Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • P. E. Chetverikov
    • 1
    • 2
  • T. Cvrković
    • 3
  • A. Makunin
    • 4
  • S. Sukhareva
    • 1
  • B. Vidović
    • 5
  • R. Petanović
    • 5
  1. 1.Department of Invertebrate ZoologySaint-Petersburg State UniversitySt. PetersburgRussia
  2. 2.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute for Plant Protection and Environment BelgradeZemunSerbia
  4. 4.Theodosius Dobzhansky Center for Genome BioinformaticsSt. Petersburg State UniversitySt. PetersburgRussia
  5. 5.Department of Entomology and Agricultural Zoology, Faculty of Agriculture BelgradeUniversity of BelgradeZemunSerbia

Personalised recommendations