Advertisement

Experimental and Applied Acarology

, Volume 66, Issue 4, pp 541–553 | Cite as

Dietary effects on body weight of predatory mites (Acari, Phytoseiidae)

  • Irina Goleva
  • Esteban C. Rubio Cadena
  • Nar B. Ranabhat
  • Caroline Beckereit
  • Claus P. W. ZebitzEmail author
Article

Abstract

Pollen is offered as alternative or supplementary food for predacious mites; however, it may vary in its nutritional value. Body weight appears a representative parameter to describe food quality. Thus, we assessed the body weight for adults of the generalist mites Amblyseius swirskii, Amblydromalus limonicus, and Neoseiulus cucumeris reared on 22, 12, and 6 pollen species, respectively. In addition, A. swirskii and A. limonicus was reared on codling moth eggs. In all mite species, female body weight was higher than that of males, ranging between 4.33 and 8.18 µg for A. swirskii, 2.56–6.53 µg for A. limonicus, and 4.66–5.92 µg for N. cucumeris. Male body weight ranged between 1.78 and 3.28 µg, 1.37–3.06 µg, and 2.73–3.03 µg, respectively. Nutritional quality of pollen was neither consistent among the mite species nor among sex, revealing superior quality of Quercus macranthera pollen for females of A. swirskii and Tulipa gesneriana pollen for males, Alnus incana pollen for females of A. limonicus and Aesculus hippocastanum pollen for males, and Ae. hippocastanum pollen for both sexes of N. cucumeris. The results are discussed against the background of known or putative pollen chemistry and mite’s nutritional physiology.

Keywords

Amblyseius swirskii Amblydromalus limonicus Neoseiulus cucumeris Pollen Codling moth eggs Food quality 

Notes

Acknowledgments

The authors are indebted to Greta Ott and Josef Schreiber for their help in pollen collection. This study was in part supported by a PhD grant from the European commission Erasmus Mundus External Cooperation Window (IAMONET-RU).

References

  1. Al-Shammery KA (2011) Plant pollen as an alternative food source for rearing Euseius scutalis (Acari: Phytoseiidae) in Hail, Saudi Arabia. J Entomol 8:365–374CrossRefGoogle Scholar
  2. Badii MH, McMurtry JA, Johnson HG (1990) Comparative life-history studies on the predaceous mites Typhlodromus annectens and T. porresi (Acari: Mesostigmata: Phytoseiidae). Exp Appl Acarol 10:129–136CrossRefGoogle Scholar
  3. Barbehenn RV, Constabel CP (2011) Tannins in plant–herbivore interactions. Phytochemistry 72:1151–1565CrossRefGoogle Scholar
  4. Beard JJ (2001) A review of the Australian Neoseiulus Hughes and Typhlodromips de Leon (Acari: Phytoseiidae: Amblyseiinae). Invertebr Taxon 15:73–158CrossRefGoogle Scholar
  5. Bonvehi SJ, Torrento MS, Lorente EG (2001) Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J Agric Food Chem 49:1848–1853CrossRefGoogle Scholar
  6. Callebaut B, van Baal E, Vandekerkhove B, Bolckmans K, De Clercq P (2004) A fecundity test for assessing the quality of Macrolophus caliginosus reared on artificial diets. Parasitica 60:9–14Google Scholar
  7. Campos MGR, Bogdanov S, de Almeida-Muradian LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F (2008) Pollen composition and standardisation of analytical methods. J Apic Res 47:156–163CrossRefGoogle Scholar
  8. Collyer E (1982) The Phytoseiidae of New Zealand (Acarina) 1. The genera Typhlodromus and Amblyseius—keys and new species. N Z J Zool 9:185–206CrossRefGoogle Scholar
  9. Croft BA, Luh HK, Schausberger P (1999) Larval size relative to larval feeding, cannibalism of larvae, egg or adult female size and larval–adult setal patterns among 13 phytoseiid mite species. Exp Appl Acarol 23:599–610CrossRefGoogle Scholar
  10. Day S, Beyer R, Mercer A, Ogden S (1990) The nutrient composition of honeybee-collected pollen in Otago, New Zealand. J Apic Res 29:138–146Google Scholar
  11. Flechtmann CHW, McMurtry JA (1992) Studies on how phytoseiid mites feed on spider mites and pollen. Int J Acarol 18:157–162CrossRefGoogle Scholar
  12. Goleva I, Zebitz CPW (2013) Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii Athias-Henriot (Acari, Phytoseiidae). Exp Appl Acarol 61:259–283PubMedCrossRefGoogle Scholar
  13. Goleva I, Gerken S, Zebitz CPW (2014) Influence of pollen feeding on body weight and body size of the predatory mite Amblyseius swirskii Athias-Henriot (Acari, Phytoseiidae). J Plant Dis Protect 121:219–222Google Scholar
  14. Grenier S, De Clercq P (2003) Comparison of artificially vs. naturally reared natural enemies and their potential for use in biological control. In: van Lenteren JC (ed) Quality control and the production of biological control agents: theory and testing procedures. UK, International CAB, pp 115–131CrossRefGoogle Scholar
  15. Hussein H (2010) Fertilisation and prey deprivation affecting reproduction, life history and life table of the predacious mite Paraseiulus talbii (Athias-Henriot) (Acari: Phytoseiidae). Arch Phytopathol Plant Protect 43:241–250CrossRefGoogle Scholar
  16. Jung C, Croft BA (2001) Aerial dispersal of phytoseiid mites (Acari: Phytoseiidae): estimating falling speed and dispersal distance of adult females. Oikos 94:182–190CrossRefGoogle Scholar
  17. Larsen RL (1971) Glucosylation of quercetin by a maize pollen enzyme. Phytochemistry 10:3073–3076CrossRefGoogle Scholar
  18. Li L, Tsao R, Yang R, Kramer JKG, Hernandez M (2007) Fatty acid profiles, tocopherol contents, and antioxidant activities of heartnut (Juglans ailanthifolia var. cordiformis) and Persian walnut (Juglans regia L.). J Agric Food Chem 55:1164–1169PubMedCrossRefGoogle Scholar
  19. Lorenzon M, Pozzebon A, Duso C (2012) Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni. Exp Appl Acarol 58:259–278PubMedCrossRefGoogle Scholar
  20. McMurtry JA, Scriven GT (1966) Effects of artificial foods on reproduction and development of four species of phytoseiid mites. Ann Entomol Soc Amer 59:267–269CrossRefGoogle Scholar
  21. McMurtry JA, de Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320CrossRefGoogle Scholar
  22. Momen FM (1994) Fertilisation and starvation affecting reproduction in Amblyseius barkeri (Hughes) (Acari, Phytoseiidae). Anz Schädl Pflanzenschutz Umweltschutz 67:130–134CrossRefGoogle Scholar
  23. Momen FM, El-Laithy AY (2007) Suitability of the flour moth Ephestia kuehniella (Lepidoptera: Pyralidae) for three predatory phytoseiid mites (Acari: Phytoseiidae) in Egypt. Int J Trop Insect Sci 27:102–107CrossRefGoogle Scholar
  24. Nguyen DT, Vangansbeke D, De Clercq P (2014) Solid artificial diets for the phytoseiid predator Amblyseius swirskii. Biocontrol 59:719–727CrossRefGoogle Scholar
  25. Nguyen DT, Vangansbeke D, De Clercq P (2015) Performance of four species of phytoseiid mites on artificial and natural diets. Biol Control 80:56–62CrossRefGoogle Scholar
  26. Overmeer WPJ (1985) Rearing and handling. In: Helle W, Sabelis MW (eds) Spider mites, vol 1B. Elsevier, Amsterdam, pp 161–170Google Scholar
  27. Patt JM, Wainright SC, Hamilton GC, Whittinghill D, Bosley K, Dietrick J, Lashomb JH (2003) Assimilation of carbon and nitrogen from pollen and nectar by a predaceous larva and its effects on growth and development. Ecol Entomol 28:717–728CrossRefGoogle Scholar
  28. Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154PubMedCrossRefGoogle Scholar
  29. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation—potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330CrossRefGoogle Scholar
  30. Rabie AL, Wells JD, Dent LK (1983) The nitrogen content of pollen protein. J Apic Res 22:119–123Google Scholar
  31. Ranabhat NB, Goleva I, Zebitz CPW (2014) Life tables of Neoseiulus cucumeris exclusively fed with seven different pollens. Biocontrol 59:195–203CrossRefGoogle Scholar
  32. Reis PR, Sousa EO, Teodoro AV, Neto MP (2003) Effect of prey density on the functional and numerical responses of two species of predaceous mites (Acari: Phytoseiidae). Neotrop Entomol 32:461–467CrossRefGoogle Scholar
  33. Roth L, Daunderer M, Kormann K (2008) Giftpflanzen-Pflanzengifte, 5th edn. Nikol Verlagsges. mbH, HamburgGoogle Scholar
  34. Roulston T, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209CrossRefGoogle Scholar
  35. Sabelis MW (1981) Biological control of two-spotted spider mites using phytoseiid predators. Part 1. Modelling the predator–prey interaction at the individual level. Agric Res Rpt 910. Wageningen, Netherlands, Pudoc 242Google Scholar
  36. Schausberger P, Croft BA (1999) Activity, feeding and development among larvae of specialist and generalist phytoseiid mite species (Acari: Phytoseiidae). Environ Entomol 28:322–329CrossRefGoogle Scholar
  37. Somerville DC, Nicol HI (2006) Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Aust J Exp Agric 46:141–149CrossRefGoogle Scholar
  38. Stanley RG, Linskens HG (1974) Pollen, biology, biochemistry and management. Springer, BerlinGoogle Scholar
  39. Todd FE, Bretherick O (1942) The composition of pollens. J Econ Entomol 3:312–317CrossRefGoogle Scholar
  40. van Lenteren JC (2003) Commercial availability of biological control agents. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, pp 167–178CrossRefGoogle Scholar
  41. van Rijn PCJ, Tanigoshi LK (1999) Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Exp Appl Acarol 23:785–802CrossRefGoogle Scholar
  42. Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, De Clercq P (2014a) Food supplementation affects interactions between a phytoseiid predator and its omnivorous prey. Biol Control 76:95–100CrossRefGoogle Scholar
  43. Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, De Clercq P (2014b) Performance of the predatory mite Amblydromalus limonicus on factitious foods. Biocontrol 59:67–77CrossRefGoogle Scholar
  44. Vantornhout I, Minnaert HL, Tirry L, de Clercq P (2004) Effect of pollen, natural prey and factitious prey on the development of Iphiseius degenerans. Biocontrol 49:627–644CrossRefGoogle Scholar
  45. Waldbauer GP (1968) The consumption and utilization of food by insects. Adv Insect Physiol 5:229–288CrossRefGoogle Scholar
  46. Walzer A, Schausberger P (2008) Phenotypic plasticity in developmental time and body size induced by food limitation in three phytoseiid mite species. In: Bertrand M, Kreiter S, McCoy KD, Migeon A, Navajas M, Tixier M-S, Vial L (eds) Integrative acarology—Proceedings of the Sixth Congress of European Association of Acarologists, European Association of Acarologists, Montpellier, pp 130–135Google Scholar
  47. Walzer A, Schausberger P (2011) Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress. Biol J Linn Soc 102:650–660CrossRefGoogle Scholar
  48. Walzer A, Schausberger P (2013) Intra- and trans-generational costs of reduced female body size caused by food limitation early in life in mites. PLOS One 8:e79089Google Scholar
  49. Walzer A, Schausberger P (2014) Canalization of body size matters for lifetime reproductive success of male predatory mites (Acari: Phytoseiidae). Biol J Linn Soc Lond 111:889–899PubMedCentralPubMedCrossRefGoogle Scholar
  50. Williams MEC, Kravar-Garde L, Fenlon JS, Sunderland KD (2004) Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 32:1–13CrossRefGoogle Scholar
  51. Yao DS, Chant DA (1990) Changes in body weight of two species of predatory mites (Acarina: Phytoseiidae) as a consequence of feeding in an interactive system. Exp Appl Acarol 8:195–220CrossRefGoogle Scholar
  52. You JM, Zhu F, Zhao WC, Zhao XE, Suo YR, Liu SJ (2007) Analysis of saturated free fatty acids from pollen by HPLC with fluorescence detection. Eur J Lipid Sci Technol 109:225–236CrossRefGoogle Scholar
  53. Zhang ZQ (2003) Mites in greenhouse: identification, biology and control. CABI Publishing Press, Cambridge 235 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Irina Goleva
    • 1
  • Esteban C. Rubio Cadena
    • 1
  • Nar B. Ranabhat
    • 1
    • 2
  • Caroline Beckereit
    • 1
  • Claus P. W. Zebitz
    • 1
    Email author
  1. 1.Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
  2. 2.Department of Land Resources and Environmental ScienceMontana State UniversityBozemanUSA

Personalised recommendations