Experimental and Applied Acarology

, Volume 66, Issue 3, pp 427–442 | Cite as

An Ixodes scapularis cell line with a predominantly neuron-like phenotype

  • Jonathan D. OliverEmail author
  • Adela S. Oliva Chávez
  • Roderick F. Felsheim
  • Timothy J. Kurtti
  • Ulrike G. Munderloh


The Ixodes scapularis embryo-derived cell line ISE6 is the most widely utilized tick-derived cell line due to its susceptibility to a wide variety of tick- and non-tick-vectored pathogens. Little is known about its tissue origin or biological background. Protein expression of ISE6 cells was compared with that of another I. scapularis-derived cell line, IDE12, and dissected tick synganglia. Results demonstrated the presence of a neuronal marker protein, type 3 β-tubulin, in all three samples, as well as other shared and unique neuronal and immune response-associated proteins. Of neuronal proteins shared between the two cell lines, ISE6 expressed several in significantly greater quantities than IDE12. Stimulation of ISE6 cells by in vivo exposure to the hemocoel environment in unfed larval and molting nymphal ticks, but not unfed nymphal ticks, resulted in the development of neuron-like morphologic characteristics in the implanted cells.


Ixodes scapularis Cell culture ISE6 IDE12 Proteome Synganglion Neuron 



This research was funded by grants from the US National Institutes of Health, Numbers R01AI042792 and R01AI049424 to Ulrike G. Munderloh. Mass spectrometry was performed at The Center for Mass Spectrometry and Proteomics at the University of Minnesota.

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the University of Minnesota. Hamsters were maintained in accordance with an approved University of Minnesota IACUC protocol.

Supplementary material

10493_2015_9908_MOESM1_ESM.txt (33 kb)
Online resource 1 Tab-delimited text file listing the proteins found by mass spectrometry in I. scapularis synganglia, ISE6, and IDE12 cells. Data listed include GI number protein name. (TXT 33 kb)
10493_2015_9908_MOESM2_ESM.txt (58 kb)
Online resource 2 Tab-delimited text file showing protein annotations exported from Blast2GO for I. scapularis synganglia. (TXT 57 kb)
10493_2015_9908_MOESM3_ESM.txt (108 kb)
Online resource 3 Tab-delimited text file showing protein annotations exported from Blast2GO for ISE6 cells. (TXT 107 kb)
10493_2015_9908_MOESM4_ESM.txt (116 kb)
Online resource 4 Tab-delimited text file showing protein annotations exported from Blast2GO for IDE12 cells. (TXT 116 kb)
10493_2015_9908_MOESM5_ESM.pdf (51 kb)
Supplemental Table S1 Shared and unique proteins related to neuronal location and/or immune function. Details include protein name, genInfo identifier (GI), annotation type (GO term or manually added), cell/tissue identification, normalized spectral count ratios for significantly different proteins found in both ISE6 and IDE12 cells, and the Fisher’s exact test p-values of those significant differences. (PDF 51 kb)


  1. Antwi K, Hanavan PD, Myers CE, Ruiz YW, Thompson EJ, Lake DF (2009) Proteomic identification of an MHC-binding peptidome from pancreas and breast cancer cell lines. Mol Immunol 46:2931–2937. doi: 10.1016/j.molimm.2009.06.021 PubMedGoogle Scholar
  2. Baldridge GD, Burkhardt NY, Labruna MB, Pacheco RC, Paddock CD, Williamson PC, Billingsley PM, Felsheim RF, Kurtti TJ, Munderloh UG (2010) Wide dispersal and possible multiple origins of low-copy-number plasmids in rickettsia species associated with blood-feeding arthropods. Appl Environ Microbiol 76:1718–1731. doi: 10.1128/AEM.02988-09 PubMedCentralPubMedGoogle Scholar
  3. Beckmann T, Thüte T, Heinrich C, Büntemeyer H, Noll T (2011) Proteomic and metabolomic characterization of CHO DP-12 cell lines with different high passage histories. BMC Proc 5(Suppl 8):P92. doi: 10.1186/1753-6561-5-S8-P92 PubMedCentralPubMedGoogle Scholar
  4. Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F (2007) Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol 23:450–457. doi: 10.1016/ PubMedGoogle Scholar
  5. Bell-Sakyi L, Kohl A, Bente DA, Fazakerley JK (2012) Tick cell lines for study of Crimean-Congo hemorrhagic fever virus and other arboviruses. Vector Borne Zoonotic Dis 12:769–781. doi: 10.1089/vbz.2011.0766 PubMedCentralPubMedGoogle Scholar
  6. Booth TF, Davies CR, Jones LD, Staunton D, Nuttall PA (1989) Anatomical basis of Thogoto virus infection in BHK cell culture and in the ixodid tick vector, Rhipicephalus appendiculatus. J Gen Virol 70(Pt 5):1093–1104PubMedGoogle Scholar
  7. Chávez ASO, Felsheim RF, Kurtti TJ, Ku P-S, Brayton KA, Munderloh UG (2012) Expression patterns of Anaplasma marginale Msp2 variants change in response to growth in cattle, and tick cells versus mammalian cells. PLoS ONE 7:e36012. doi: 10.1371/journal.pone.0036012 CrossRefPubMedGoogle Scholar
  8. Chen C, Munderloh UG, Kurtti TJ (1994) Cytogenetic characteristics of cell lines from Ixodes scapularis (Acari: Ixodidae). J Med Entomol 31:425–434PubMedGoogle Scholar
  9. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi: 10.1093/bioinformatics/bti610 CrossRefPubMedGoogle Scholar
  10. Egekwu N, Sonenshine DE, Bissinger BW, Roe RM (2014) Transcriptome of the female synganglion of the black-legged tick Ixodes scapularis (Acari: Ixodidae) with comparison between Illumina and 454 systems. PLoS ONE 9:e102667. doi: 10.1371/journal.pone.0102667 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Esteves E, Lara FA, Lorenzini DM, Costa GHN, Fukuzawa AH, Pressinotti LN, Silva JRMC, Ferro JA, Kurtti TJ, Munderloh UG, Daffre S (2008) Cellular and molecular characterization of an embryonic cell line (BME26) from the tick Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol 38:568–580. doi: 10.1016/j.ibmb.2008.01.006 PubMedCentralPubMedGoogle Scholar
  12. Garcia S, Billecocq A, Crance J-M, Munderloh U, Garin D, Bouloy M (2005) Nairovirus RNA sequences expressed by a Semliki Forest virus replicon induce RNA interference in tick cells. J Virol 79:8942–8947. doi: 10.1128/JVI.79.14.8942-8947.2005 PubMedCentralPubMedGoogle Scholar
  13. Intawicha P, Wang S-H, Hsieh Y-C, Lo N-W, Lee K-H, Huang S-Y, Ju J-C (2013) Proteomic profiling of rabbit embryonic stem cells derived from parthenotes and fertilized embryos. PLoS ONE 8:e67772. doi: 10.1371/journal.pone.0067772 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Jenson LJ, Paulson SL, Bloomquist JR (2012) Induction and inhibition of an apparent neuronal phenotype in Spodoptera frugiperda insect cells (Sf21) by chemical agents. Invert Neurosci 12:119–127. doi: 10.1007/s10158-012-0138-5 PubMedGoogle Scholar
  15. Jouhilahti E-M, Peltonen S, Peltonen J (2008) Class III beta-tubulin is a component of the mitotic spindle in multiple cell types. J Histochem Cytochem 56:1113–1119. doi: 10.1369/jhc.2008.952002 PubMedCentralPubMedGoogle Scholar
  16. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392PubMedGoogle Scholar
  17. Kim JS, Chang M-Y, Yu IT, Kim JH, Lee S-H, Lee Y-S, Son H (2004) Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 89:324–336. doi: 10.1046/j.1471-4159.2004.02329.x PubMedGoogle Scholar
  18. Kuriakose JA, Miyashiro S, Luo T, Zhu B, McBride JW (2011) Ehrlichia chaffeensis transcriptome in mammalian and arthropod hosts reveals differential gene expression and post transcriptional regulation. PLoS ONE 6:e24136. doi: 10.1371/journal.pone.0024136 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Kurtti TJ, Keyhani NO (2008) Intracellular infection of tick cell lines by the entomopathogenic fungus Metarhizium anisopliae. Microbiology 154:1700–1709. doi: 10.1099/mic.0.2008/016667-0 CrossRefPubMedGoogle Scholar
  20. Kurtti TJ, Munderloh UG (1983) The effects of 20-hydroxyecdysone and juvenile hormone III on tick cells. J Parasitol 69:1072–1078PubMedGoogle Scholar
  21. Kurtti TJ, Munderloh UG, Andreadis TG, Magnarelli LA, Mather TN (1996) Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis. J Invertebr Pathol 67:318–321. doi: 10.1006/jipa.1996.0050 PubMedGoogle Scholar
  22. Kurtti TJ, Mattila JT, Herron MJ, Felsheim RF, Baldridge GD, Burkhardt NY, Blazar BR, Hackett PB, Meyer JM, Munderloh UG (2008) Transgene expression and silencing in a tick cell line: A model system for functional tick genomics. Insect Biochem Mol Biol 38:963–968PubMedCentralPubMedGoogle Scholar
  23. Lawrie CH, Uzcátegui NY, Armesto M, Bell-Sakyi L, Gould EA (2004) Susceptibility of mosquito and tick cell lines to infection with various flaviviruses. Med Vet Entomol 18:268–274. doi: 10.1111/j.0269-283X.2004.00505.x PubMedGoogle Scholar
  24. Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A (1990) The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskelet 17:118–132. doi: 10.1002/cm.970170207 Google Scholar
  25. Leiss D, Hinz U, Gasch A, Mertz R, Renkawitz-Pohl R (1988) Beta 3 tubulin expression characterizes the differentiating mesodermal germ layer during Drosophila embryogenesis. Development 104:525–531PubMedGoogle Scholar
  26. Lin-Moshier Y, Sebastian PJ, Higgins L, Sampson ND, Hewitt JE, Marchant JS (2013) Re-evaluation of the role of calcium homeostasis endoplasmic reticulum protein (CHERP) in cellular calcium signaling. J Biol Chem 288:355–367. doi: 10.1074/jbc.M112.405761 PubMedCentralPubMedGoogle Scholar
  27. Ludueña RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275PubMedGoogle Scholar
  28. Lynn GE, Oliver JD, Nelson CM, Felsheim RF, Kurtti TJ, Munderloh UG (2015) Tissue distribution of the Ehrlichia muris-like agent in a tick vector. PLoS ONE 10:e0122007. doi: 10.1371/journal.pone.0122007 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Mattila JT, Munderloh UG, Kurtti TJ (2007) Phagocytosis of the Lyme disease spirochete, Borrelia burgdorferi, by cells from the ticks, Ixodes scapularis and Dermacentor andersoni, infected with an endosymbiont, Rickettsia peacockii. J Insect Sci 7:58. doi: 10.1673/031.007.5801 PubMedCentralPubMedGoogle Scholar
  30. Meyer JM, Kurtti TJ, Van Zee JP, Hill CA (2010) Genome organization of major tandem repeats in the hard tick, Ixodes scapularis. Chromosome Res 18:357–370. doi: 10.1007/s10577-010-9120-4 PubMedGoogle Scholar
  31. Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ (1994) Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol 80:533–543PubMedGoogle Scholar
  32. Munderloh UG, Blouin EF, Kocan KM, Ge NL, Edwards WL, Kurtti TJ (1996a) Establishment of the tick (Acari:Ixodidae)-borne cattle pathogen Anaplasma marginale (Rickettsiales:Anaplasmataceae) in tick cell culture. J Med Entomol 33:656–664PubMedGoogle Scholar
  33. Munderloh UG, Madigan JE, Dumler JS, Goodman JL, Hayes SF, Barlough JE, Nelson CM, Kurtti TJ (1996b) Isolation of the equine granulocytic ehrlichiosis agent, Ehrlichia equi, in tick cell culture. J Clin Microbiol 34:664–670PubMedCentralPubMedGoogle Scholar
  34. Munderloh UG, Tate CM, Lynch MJ, Howerth EW, Kurtti TJ, Davidson WR (2003) Isolation of an Anaplasma sp. organism from white-tailed deer by tick cell culture. J Clin Microbiol 41:4328–4335PubMedCentralPubMedGoogle Scholar
  35. Munderloh UG, Yabsley MJ, Murphy SM, Luttrell MP, Howerth EW (2007) Isolation and establishment of the raccoon Ehrlichia-like agent in tick cell culture. Vector Borne Zoonotic Dis 7:418–425. doi: 10.1089/vbz.2007.0640 PubMedGoogle Scholar
  36. Munderloh UG, Silverman DJ, MacNamara KC, Ahlstrand GG, Chatterjee M, Winslow GM (2009) Ixodes ovatus Ehrlichia exhibits unique ultrastructural characteristics in mammalian endothelial and tick-derived cells. Ann N Y Acad Sci 1166:112–119. doi: 10.1111/j.1749-6632.2009.04520.x PubMedCentralPubMedGoogle Scholar
  37. Naranjo V, Ayllón N, Pérez de la Lastra JM, Galindo RC, Kocan KM, Blouin EF, Mitra R, Alberdi P, Villar M, de la Fuente J (2013) Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, Ixodes scapularis. PLoS One 8:e65915. doi: 10.1371/journal.pone.0065915 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Negoro E, Yamauchi T, Urasaki Y, Nishi R, Hori H, Ueda T (2011) Characterization of cytarabine-resistant leukemic cell lines established from five different blood cell lineages using gene expression and proteomic analyses. Int J Oncol 38:911–919. doi: 10.3892/ijo.2011.933 PubMedGoogle Scholar
  39. Nelson CM, Herron MJ, Felsheim RF, Schloeder BR, Grindle SM, Chavez AO, Kurtti TJ, Munderloh UG (2008) Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genom 9:364. doi: 10.1186/1471-2164-9-364 Google Scholar
  40. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658PubMedGoogle Scholar
  41. Offerdahl DK, Dorward DW, Hansen BT, Bloom ME (2012) A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines. PLoS ONE 7:e47912. doi: 10.1371/journal.pone.0047912 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Oliver JD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG (2014) Motility characteristics are altered for Rickettsia bellii Transformed to overexpress a heterologous ricka gene. Appl Environ Microbiol 80:1170–1176. doi: 10.1128/AEM.03352-13 PubMedCentralPubMedGoogle Scholar
  43. Ons S, Richter F, Urlaub H, Pomar RR (2009) The neuropeptidome of Rhodnius prolixus brain. Proteomics 9:788–792. doi: 10.1002/pmic.200800499 CrossRefPubMedGoogle Scholar
  44. Pornwiroon W, Pourciau SS, Foil LD, Macaluso KR (2006) Rickettsia felis from cat fleas: isolation and culture in a tick-derived cell line. Appl Environ Microbiol 72:5589–5595. doi: 10.1128/AEM.00532-06 PubMedCentralPubMedGoogle Scholar
  45. Protocols CSH (2006) RIPA buffer (05-01). Cold Spring Harb Protoc 2006:pdb.rec10617–pdb.rec10617. doi:  10.1101/pdb.rec10617
  46. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670PubMedGoogle Scholar
  47. Rego ROM, Hajdusek O, Kovár V, Kopácek P, Grubhoffer L, Hypsa V (2005) Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochem Mol Biol 35:991–1004. doi: 10.1016/j.ibmb.2005.04.001 PubMedGoogle Scholar
  48. Ribeiro MFB, Bastos CV, Vasconcelos MMC, Passos LMF (2009) Babesia bigemina: in vitro multiplication of sporokinetes in Ixodes scapularis (IDE8) cells. Exp Parasitol 122:192–195. doi: 10.1016/j.exppara.2009.03.011 PubMedGoogle Scholar
  49. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607. doi: 10.1038/nmeth.1220 PubMedCentralPubMedGoogle Scholar
  50. Rockland LB (1960) Saturated salt solutions for static control of relative humidity between 5° and 40 °C. Anal Chem 32:1375–1376. doi: 10.1021/ac60166a055 Google Scholar
  51. Rudolph JE, Kimble M, Hoyle HD, Subler MA, Raff EC (1987) Three Drosophila beta-tubulin sequences: a developmentally regulated isoform (beta 3), the testis-specific isoform (beta 2), and an assembly-defective mutation of the testis-specific isoform (B2t8) reveal both an ancient divergence in metazoan isotypes an. Mol Cell Biol 7:2231–2242PubMedCentralPubMedGoogle Scholar
  52. Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE, Beaty BJ (2007) Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7:9. doi: 10.1186/1471-2180-7-9 PubMedCentralPubMedGoogle Scholar
  53. Siebert KS, Lorenzen MD, Brown SJ, Park Y, Beeman RW (2008) Tubulin superfamily genes in Tribolium castaneum and the use of a Tubulin promoter to drive transgene expression. Insect Biochem Mol Biol 38:749–755. doi: 10.1016/j.ibmb.2008.04.007 PubMedGoogle Scholar
  54. Simser JA, Palmer AT, Munderloh UG, Kurtti TJ (2001) Isolation of a spotted fever group Rickettsia, Rickettsia peacockii, in a Rocky Mountain wood tick, Dermacentor andersoni, cell line. Appl Environ Microbiol 67:546–552. doi: 10.1128/AEM.67.2.546-552.2001 PubMedCentralPubMedGoogle Scholar
  55. Simser JA, Palmer AT, Fingerle V, Wilske B, Kurtti TJ, Munderloh UG (2002) Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Environ Microbiol 68:4559–4566PubMedCentralPubMedGoogle Scholar
  56. Simser JA, Macaluso KR, Mulenga A, Azad AF (2004) Immune-responsive lysozymes from hemocytes of the American dog tick, Dermacentor variabilis and an embryonic cell line of the Rocky Mountain wood tick, D. andersoni. Insect Biochem Mol Biol 34:1235–1246. doi: 10.1016/j.ibmb.2004.07.003 PubMedGoogle Scholar
  57. Sullivan KF, Cleveland DW (1986) Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci U S A 83:4327–4331PubMedCentralPubMedGoogle Scholar
  58. Tate CM, Howerth EW, Mead DG, Dugan VG, Luttrell MP, Sahora AI, Munderloh UG, Davidson WR, Yabsley MJ (2013) Anaplasma odocoilei sp. nov. (family Anaplasmataceae) from white-tailed deer (Odocoileus virginianus). Ticks Tick Borne Dis 4:110–119. doi: 10.1016/j.ttbdis.2012.09.005 PubMedCentralPubMedGoogle Scholar
  59. Towers PR, Sattelle DB (2002) A Drosophila melanogaster cell line (S2) facilitates post-genome functional analysis of receptors and ion channels. BioEssays 24:1066–1073. doi: 10.1002/bies.10178 CrossRefPubMedGoogle Scholar
  60. Tucker AM, Driskell LO, Pannell LK, Wood DO (2011) Differential proteomic analysis of Rickettsia prowazekii propagated in diverse host backgrounds. Appl Environ Microbiol 77:4712–4718. doi: 10.1128/AEM.05140-11 PubMedCentralPubMedGoogle Scholar
  61. Varela AS, Luttrell MP, Howerth EW, Moore VA, Davidson WR, Stallknecht DE, Little SE (2004) First culture isolation of Borrelia lonestari, putative agent of southern tick-associated rash illness. J Clin Microbiol 42:1163–1169PubMedCentralPubMedGoogle Scholar
  62. Woldehiwet Z, Horrocks BK, Scaife H, Ross G, Munderloh UG, Bown K, Edwards SW, Hart CA (2002) Cultivation of an ovine strain of Ehrlichia phagocytophila in tick cell cultures. J Comp Pathol 127:142–149PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of MinnesotaSt. PaulUSA
  2. 2.UMR CMAEE, Agricultural Research Centre for International Development - Control of Animal Diseases, Emerging and ExoticCIRADPetit-BourgFrance

Personalised recommendations