Experimental and Applied Acarology

, Volume 65, Issue 4, pp 451–464 | Cite as

Amblyseius swirskii in greenhouse production systems: a floricultural perspective

  • Rosemarije BuitenhuisEmail author
  • Graeme Murphy
  • Les Shipp
  • Cynthia Scott-Dupree


The predatory mite Amblyseius swirskii Athias-Henriot is a biological control agent that has the potential to play an important role in pest management in many greenhouse crops. Most research on this predatory mite has focused on its use and efficacy in greenhouse vegetables. However, an increasing number of growers of greenhouse ornamental crops also want to adopt biological control as their primary pest management strategy and find that biological control programs developed for vegetables are not optimized for use on floricultural plants. This paper reviews the use of A. swirskii in greenhouse crops, where possible highlighting the specific challenges and characteristics of ornamentals. The effects of different factors within the production system are described from the insect/mite and plant level up to the production level, including growing practices and environmental conditions. Finally, the use of A. swirskii within an integrated pest management system is discussed.


Phytoseiidae Integrated pest management Biological control Thrips Whiteflies 



The authors thank their colleagues and three anonymous reviewers for their helpful comments and suggestions on the manuscript.


  1. Adar E, Inbar M, Gal S, Doron N, Zhang Z-Q, Palevsky E (2012) Plant-feeding and non-plant feeding phytoseiids: differences in behavior and cheliceral morphology. Exp Appl Acarol 58:341–357CrossRefPubMedGoogle Scholar
  2. Adar E, Inbar M, Gal S, Gan-Mor S, Palevsky E (2014) Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops. Biocontrol 59:307–317CrossRefGoogle Scholar
  3. Arthurs S, McKenzie CL, Chen J, Dogramaci M, Brennan M, Houben K, Osborne L (2009) Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol Control 49:91–96CrossRefGoogle Scholar
  4. Avery P, Kumar V, Xiao Y, Powell C, McKenzie C, Osborne L (2014) Selecting an ornamental pepper banker plant for Amblyseius swirskii in floriculture crops. Arthropod Plant Interact 8:49–56CrossRefGoogle Scholar
  5. Bakker FM, Sabelis MW (1989) How larvae of Thrips tabaci reduce the attack succes of phytoseiid predators. Entomol Exp Appl 50:47–51CrossRefGoogle Scholar
  6. Biobest (2014) Side-effects manual. Accessed 14 Jan 2014
  7. Boulard T, Fatnassi H, Roy JC, Lagier J, Fargues J, Smits N, Rougier M, Jeannequin B (2004) Effect of greenhouse ventillation on humidity of inside air and in leaf boundary layer. Agric For Meteorol 125:225–239CrossRefGoogle Scholar
  8. Brødsgaard HF, Heinz KM, Van Driesche RG, Parella MP (2004) Biological control of thrips on ornamental crops. In: Heinz KM, Van Driesche RG, Parella MP (eds) Biocontrol in protected culture. Ball Publishing, Batavia, pp 253–264Google Scholar
  9. Buitenhuis R, Shipp JL, Scott-Dupree C (2010a) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52:110–114CrossRefGoogle Scholar
  10. Buitenhuis R, Shipp JL, Scott-Dupree C (2010b) Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Bull Entomol Res 100:167–173CrossRefPubMedGoogle Scholar
  11. Buitenhuis R, Murphy G, Shipp L (2013) Aphis gossypii Glover, melon/cotton aphid, Aulacorthum solani (Kaltenbach), foxglove aphid, and other arthropod pests in greenhouse crops. In: Gillespie D, Mason P (eds) Biological Control Programmes in Canada 2001–2012. CABI, Wallingford, pp 98–107Google Scholar
  12. Buitenhuis R, Glemser E, Brommit A (2014a) Practical placement improves the performance of slow release sachets of Neoseiulus cucumeris. Biocontrol Sci Technol 24:1153–1166CrossRefGoogle Scholar
  13. Buitenhuis R, Shipp L, Scott-Dupree C, Brommit A, Lee W (2014b) Host plant effects on the behaviour and performance of Amblyseius swirskii (Acari: Phytoseiidae). Exp Appl Acarol 62:171–180CrossRefPubMedGoogle Scholar
  14. Calvo FJ, Bolckmans K, Belda JE (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. Biocontrol 56:185–192CrossRefGoogle Scholar
  15. Calvo FJ, Bolckmans K, Belda JE (2012) Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci Technol 22:1398–1416CrossRefGoogle Scholar
  16. Cédola CV, Sánchez NE, Liljesthröm GG (2002) Effect of tomato leaf hairiness on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 25:819–831CrossRefGoogle Scholar
  17. Chow A, Chau A, Heinz KM (2010) Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biol Control 53:188–196CrossRefGoogle Scholar
  18. Cloutier C, Johnson SG (1993) Interaction between life stages in a phytoseiid predator: western flower thrips prey killed by adults as food for protonymphs of Amblyseius cucumeris. Exp Appl Acarol 17:441–449CrossRefGoogle Scholar
  19. Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? Biocontrol 55:199–218CrossRefGoogle Scholar
  20. Coll M, Salomon-Botner M (2013) On the interplay between omnivores’ behavior and the nutritional value of plant and prey foods. In: Mason PG, Gillespie DR, Vincent C (eds) Proceedings of the 4th International Symposium on biological control of Arthropods. Pucon, Chile, pp 224–225Google Scholar
  21. Colomer I, Aguado P, Medina P, Heredia RM, Fereres A, Belda JE, Viñuela E (2011) Field trial measuring the compatibility of methoxyfenozide and flonicamid with Orius laevigatus Fieber (Hemiptera: Anthocoridae) and Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) in a commercial pepper greenhouse. Pest Manag Sci 67:1237–1244CrossRefPubMedGoogle Scholar
  22. Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–47CrossRefGoogle Scholar
  23. Cuthbertson AGS, Mathers JJ, Croft P, Nattriss N, Blackburn LF, Luo W, Northing P, Murai T, Jacobson RJ, Walters KFA (2012) Prey consumption rates and compatibility with pesticides of four predatory mites from the family Phytoseiidae attacking Thrips palmi Karny (Thysanoptera: Thripidae). Pest Manag Sci 68:1289–1295CrossRefPubMedGoogle Scholar
  24. de Almeida AA, Janssen A (2013) Juvenile prey induce antipredator behaviour in adult predators. Exp Appl Acarol 59:275–282CrossRefPubMedCentralPubMedGoogle Scholar
  25. de Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:1–494Google Scholar
  26. Delisle J, Shipp L, Brodeur J (2015) Influence of supplemental food on the biology and control efficacy of two predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae) on western flower thrips. Exp Appl Acarol. doi: 10.1007/s10493-014-9863-2 Google Scholar
  27. Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefPubMedGoogle Scholar
  28. Ferrero M, Gigot C, Tixier M-S, van Houten YM, Kreiter S (2010) Egg hatching response to a range of air humidities for six species of predatory mites. Entomol Exp Appl 135:237–244CrossRefGoogle Scholar
  29. Gerson U, Weintraub PG (2007) Mites for the control for pests in protected cultivation. Pest Manag Sci 63:658–676CrossRefPubMedGoogle Scholar
  30. Gnanvossou D, Hanna R, Dicke M (2003) Infochemical-mediated intraguild interactions among three predatory mites on cassava plants. Oecologia 135:84–90CrossRefPubMedGoogle Scholar
  31. Goleva I, Zebitz CW (2013) Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp Appl Acarol 61:259–283CrossRefPubMedGoogle Scholar
  32. Gradish AE, Scott-Dupree CD, Shipp L, Harris CR, Ferguson G (2011) Effect of reduced risk pesticides on greenhouse vegetable arthropod biological control agents. Pest Manag Sci 67:82–86CrossRefPubMedGoogle Scholar
  33. Hewitt LC, Shipp L, Buitenhuis R, Scott-Dupree C (2015) Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips in greenhouse ornamental crops. Exp Appl Acarol. doi: 10.1007/s10493-014-9861-4 Google Scholar
  34. Hoda FM, El-Naggar ME, Taha AH, Ibrahim GA (1986) Effect of different types of food on fecundity of predacious mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Bulletin de la Société Entomologique d’Egypte 66:113–116Google Scholar
  35. Hoogerbrugge H, van Houten Y, van Baal E, Bolckmans K (2008) Alternative food sources to enable establishment of Amblyseius swirskii (Athias-Henriot) on chrysanthemum without pest presence. IOBC/WPRS Bull 32:79–82Google Scholar
  36. Jacobson RJ, Chandler D, Fenlon J, Russel KM (2001) Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Sci Technol 11:391–400CrossRefGoogle Scholar
  37. Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A, Sabelis MW (2006) Intraguild predation usually does not disrupt biological control. In: Brodeur J, Boivin G (eds) Trophic and guild interactions in biological control. Springer, Dordrecht, pp 21–44CrossRefGoogle Scholar
  38. Janssen A, Sabelis MW, Magalhaes S, Montserrat M, van der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719CrossRefPubMedGoogle Scholar
  39. Jewett TJ, Jarvis WR (2001) Management of the greenhouse microclimate in relation to disease control: a review. Agronomie 21:351–366CrossRefGoogle Scholar
  40. Johansen NS, Vänninen I, Pinto DM, Nissinen AI, Shipp L (2011) In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops. Ann Appl Biol 159:1–27CrossRefGoogle Scholar
  41. Knapp M, van Houten Y, Hoogerbrugge H, Bolckmans K (2013) Amblydromalus limonicus (Acari: Phytoseiidae) as a biocontrol agent: literature review and new findings. Acarologia 53(2):191–202CrossRefGoogle Scholar
  42. Lee H-S, Gillespie DR (2011) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53:17–27CrossRefPubMedGoogle Scholar
  43. Lindquist RK, Short TL (2004) Effects of greenhouse structure and function on biological control. In: Heinz KM, Van Driesche RG, Parella MP (eds) Biocontrol in protected culture. Ball Publishing, Batavia, pp 37–54Google Scholar
  44. Loughner R, Nyrop J, Wentworth K, Sanderson J (2011) Effects of supplemental pollen and fibers on canopy abundance of Amblyseius swirskii. IOBC Bull 68:105–109Google Scholar
  45. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321CrossRefPubMedGoogle Scholar
  46. Messelink G, Janssen A (2008) Do whiteflies help controlling thrips? IOBC/WPRS Bull 32:131–134Google Scholar
  47. Messelink GJ, van Steenpaal SEF, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biocontrol 51:753–768CrossRefGoogle Scholar
  48. Messelink G, van Maanen R, van Steenpaal S, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379CrossRefGoogle Scholar
  49. Messelink GJ, van Maanen R, van Holstein-Saj R, Sabelis MW, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. Biocontrol 55:387–398CrossRefGoogle Scholar
  50. Messelink GJ, Bloemhard CMJ, Cortes JA, Sabelis MW, Janssen A (2011) Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biol Control 57:246–252CrossRefGoogle Scholar
  51. Messelink GJ, Bloemhard CMJ, Sabelis MW, Janssen A (2013) Biological control of aphids in the presence of thrips and their enemies. Biocontrol 58:45–55CrossRefGoogle Scholar
  52. Midthassel A, Leather S, Baxter I (2013) Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Exp Appl Acarol 61:69–78CrossRefPubMedGoogle Scholar
  53. Momen FM, El-Saway SA (1993) Biology and feeding behaviour of the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 34:199–204Google Scholar
  54. Montserrat M, Janssen A, Magalhaes S, Sabelis MW (2006) To be an intra-guild predator or a cannibal: is prey quality decisive? Ecol Entomol 31:430–436CrossRefGoogle Scholar
  55. Nguyen D, Vangansbeke D, Clercq P (2014) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp Appl Acarol 62:181–194CrossRefPubMedGoogle Scholar
  56. Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291CrossRefPubMedGoogle Scholar
  57. Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68CrossRefPubMedGoogle Scholar
  58. Nomikou M, Janssen A, Sabelis MW (2003) Phytoseiid predator of whitefly feeds on plant tissue. Exp Appl Acarol 31:27–36CrossRefPubMedGoogle Scholar
  59. Nomikou M, Meng R, Schraag R, Sabelis MW, Janssen A (2005) How predatory mites find plants with whitefly prey. Exp Appl Acarol 36:263–275CrossRefPubMedGoogle Scholar
  60. Nomikou M, Sabelis MW, Janssen A (2010) Pollen subsidies promote whitefly control through the numerical response of predatory mites. Biocontrol 55:253–260CrossRefGoogle Scholar
  61. Onzo A, Sabelis M, Hanna R (2014) Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa. Exp Appl Acarol 62:293–311CrossRefPubMedGoogle Scholar
  62. Park HH, Shipp JL, Buitenhuis R (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). J Econ Entomol 103:563–569CrossRefPubMedGoogle Scholar
  63. Park HH, Shipp L, Buitenhuis R, Ahn JJ (2011) Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). J Asia Pac Entomol 14:497–501CrossRefGoogle Scholar
  64. Pijnakker J, Ramakers P (2008) Predatory mites for biocontrol of Western flower thrips, Frankliniella occidentalis (Pergande), in cut roses. IOBC Bull 32:171–174Google Scholar
  65. Porath A, Swirski E (1965) A survey of phytoseiid mites (Acarina: Phytoseiidae) on citrus, with a description of one new species. Israel Journal of Agricultural Research 15:87–100Google Scholar
  66. Ragusa S, Swirski E (1977) Feeding habits, post-embryonic and adult survival, mating, virility and fecundity of the predaceous mite Amblyseius swirskii [Acarina: Phytoseiidae] on some coccids and mealybugs. Entomophaga 22:383–392CrossRefGoogle Scholar
  67. Rasmy AH, Abou-El-Ella GM, Hussein HE (2004) Cannibalism and interspecific predation of the phytoseiid mite, Amblyseius swirskii. J Pest Sci 77:23–25CrossRefGoogle Scholar
  68. Sato Y, Mochizuki A (2011) Risk assessment of non-target effects caused by releasing two exotic phytoseiid mites in Japan: can an indigenous phytoseiid mite become IG prey? Exp Appl Acarol 54:319–329CrossRefPubMedGoogle Scholar
  69. Schmidt R (2014) Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp Appl Acarol 62:1–17CrossRefPubMedGoogle Scholar
  70. Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116:807–817CrossRefGoogle Scholar
  71. Shipp JL, Zhang Y, Hunt DWS, Fergusson G (2003) Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environ Entomol 32:1154–1163CrossRefGoogle Scholar
  72. Shipp L, Johansen N, Vänninen I, Jacobson R (2009) Greenhouse climate: an important consideration when developing pest management programs for greenhouse crops. Acta Hortic 893:133–143Google Scholar
  73. Shipp L, Kapongo JP, Park H-H, Kevan P (2012) Effect of bee-vectored Beauveria bassiana on greenhouse beneficials under greenhouse cage conditions. Biol Control 63:135–142CrossRefGoogle Scholar
  74. Stansly PA, Castillo J (2009) Control of broad mite Polyphagotarsonemus latus and the whitefly Bemisia tabaci in open field pepper and eggplant with predaceous mites. IOBC/WPRS Bull 49:145–152Google Scholar
  75. Swirski E, Amitai S, Dorzia N (1967) Laboratory studies on the feeding, development and reproduction of the predaceous mites Amblyseius rubini Swirski and Amitai and Amblyseius swirskii Athias-Henriot (Acarina: Phytoseiidae) on various kinds of food substances. Isr J Agric Res 17:101–119Google Scholar
  76. van Haren RJF, Steenhuis MM, Sabelis MW, de Ponti OMB (1987) Tomato stem trichomes and dispersal success of Phytoseiulus persimilis relative to its prey Tetranychus urticae. Exp Appl Acarol 3:115–121CrossRefGoogle Scholar
  77. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20CrossRefGoogle Scholar
  78. van Maanen R, Vila E, Sabelis MW, Janssen A (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52:29–34CrossRefPubMedCentralPubMedGoogle Scholar
  79. van Maanen R, Messelink GJ, van Holstein R-S, Sabelis MW, Janssen A (2012) Prey temporarily escape from predation in the presence of a second prey species. Ecol Entomol 37:529–535CrossRefGoogle Scholar
  80. van Rijn PCJ, van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679CrossRefGoogle Scholar
  81. Vänninen I, Pinto DM, Nissinen AI, Johansen NS, Shipp L (2010) In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions. Ann Appl Biol 157:393–414CrossRefGoogle Scholar
  82. Weintraub PG, Kleitman S, Mori R, Gan-Mor S, Ganot L, Palevsky E (2009) Novel application of pollen to augment the predator Amblyseius swirskii on greenhouse sweet pepper. IOBC Bull 50:119–124Google Scholar
  83. Weintraub PG, Pivonia S, Steinberg S (2011) How many Orius laevigatus are needed for effective western flower thrips, Frankliniella occidentalis, management in sweet pepper? Crop Prot 30:1443–1448CrossRefGoogle Scholar
  84. Wimmer D, Hoffmann D, Schausberger P (2008) Prey suitability of western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci Technol 18:541–550CrossRefGoogle Scholar
  85. Xiao Y, Avery P, Chen J, McKenzie C, Osborne L (2012) Ornamental pepper as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production. Biol Control 63:279–286CrossRefGoogle Scholar
  86. Xu X, Enkegaard A (2010) Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the twospotted spider mite Tetranychus urticae. J Insect Sci 10:149CrossRefPubMedCentralPubMedGoogle Scholar
  87. Zemek R, Nachman G (1999) Interactions in a tritrophic acarine predator–prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:21–40CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rosemarije Buitenhuis
    • 1
    Email author
  • Graeme Murphy
    • 2
  • Les Shipp
    • 3
  • Cynthia Scott-Dupree
    • 4
  1. 1.Vineland Research and Innovation CentreVineland StationCanada
  2. 2.Ontario Ministry of Agriculture and Food and Ministry of Rural AffairsVineland StationCanada
  3. 3.Agriculture and Agri-Food CanadaHarrowCanada
  4. 4.School of Environmental SciencesUniversity of GuelphGuelphCanada

Personalised recommendations