Advertisement

Experimental and Applied Acarology

, Volume 65, Issue 4, pp 435–450 | Cite as

Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips in greenhouse ornamental crops

  • Laura C. Hewitt
  • Les ShippEmail author
  • Rose Buitenhuis
  • Cynthia Scott-Dupree
Article

Abstract

The influence of seasonal greenhouse climate on the efficacy of predatory mites for thrips control was determined for potted chrysanthemum. Trials in controlled environment chambers, small-scale greenhouses and commercial greenhouses were conducted to determine which biological control agent—that is, Amblyseius swirskii Athias-Henriot or Neoseiulus cucumeris (Oudemans)—is more efficacious for control of western flower thrips, Frankliniella occidentalis (Pergande), in different seasons. Under simulated summer conditions, no differences were observed in the predation and oviposition rates of both predatory mites in the laboratory trials. However, small-scale greenhouse trials showed that A. swirskii performed better than N. cucumeris in summer (i.e., more efficacious thrips control, higher predator abundance and less overall damage to the crop). Under simulated winter conditions, laboratory trials demonstrated variable differences in predation rates of the two predatory mites. The small-scale greenhouse trials in winter showed no differences in thrips control and predatory mite abundance between the two predatory mites, but plants with A. swirskii had less damage overall. The results from the small-scale trials were validated and confirmed in commercial greenhouse trials. Overall, A. swirskii performed better in the summer and equally good or better (less damage overall) under winter conditions, whereas N. cucumeris is a more cost effective biological control agent for winter months.

Keywords

Phytoseiidae Neoseiulus cucumeris Amblyseius swirskii Temperature Light 

Notes

Acknowledgments

The authors thank the technical assistance provided by staff at Agriculture and Agri-Food Canada, School of Environmental Sciences - University of Guelph, Vineland Research and Innovation Centre, Boekestyn Greenhouses and Meyers Farms for use of their greenhouses and the three anonymous reviewers for their helpful comments and suggestions on the manuscript. Funding for this project was provided by the Agriculture and Agri-Food Canada Growing Forward ‘Canadian Ornamental Horticulture Research and Innovation Cluster’.

References

  1. Arthurs S, McKenzie CL, Chen J, Dogramaci M, Brennan M, Houben K, Osborne L (2009) Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol Control 49:91–96CrossRefGoogle Scholar
  2. Belcher DW, Thurston R (1982) Inhibition of movement of larvae of the convergent lady beetle by leaf trichomes of tobacco. Environ Entomol 11:91–94CrossRefGoogle Scholar
  3. Blumthal MR, Cloyd RA, Spomer LA, Warnock DF (2005) Flower color preferences of western flower thrips. HortTechnology 15:846–853Google Scholar
  4. Broadbent AB, Allen WR (1995) Interactions within the western flower thrips/tomato spotted wilt virus/host plant complex on virus epidemiology. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum, New York, pp 185–196CrossRefGoogle Scholar
  5. Brødsgaard HF (2004) Biological control of thrips on ornamental crops. In: Heinz KM, Van Driesche RG, Parrella MP (eds) Biocontrol in protected culture. Ball Publishings, Batavia, pp 253–264Google Scholar
  6. Buitenhuis R, Shipp J, Jandricic S, Murphy G, Short M (2007) Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse ornamentals. Pest Manag Sci 63:910–917CrossRefPubMedGoogle Scholar
  7. Buitenhuis R, Shipp L, Scott-Dupree C (2010a) Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Bull Entomol Res 100:167–173CrossRefPubMedGoogle Scholar
  8. Buitenhuis R, Shipp L, Scott-Dupree C (2010b) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52:110–114CrossRefGoogle Scholar
  9. Buitenhuis R, Shipp L, Scott-Dupree C, Brommit A, Lee W (2014) Host plant effects on the behaviour and performance of Amblyseius swirskii (Acari: Phytoseiidae). Exp Appl Acarol 62:171–180CrossRefPubMedGoogle Scholar
  10. Cloutier C, Arodokoun D, Johnson SG, Gelinas L (1995) Thermal dependence of Amblyseius cucumeris (Acarina: Phytoseiidae) and Orius insidiosus (Heteroptera: Anthocoridae) in greenhouses. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 231–235CrossRefGoogle Scholar
  11. Daughtrey ML, Jones RK, Moyer JW, Daub ME, Baker JR (1997) Tospoviruses strike the greenhouse industry: INSV has become a major pathogen on flower crops. Plant Dis 81:1220–1230CrossRefGoogle Scholar
  12. de Almeida AA, Janssen A (2013) Juvenile prey induce anti-predator behaviour in adult predators. Exp Appl Acarol 59:275–282CrossRefPubMedCentralPubMedGoogle Scholar
  13. De Courcy Williams M, Kravar-Garde L, Fenlon J, Sunderland KD (2004) Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 32:1–13CrossRefPubMedGoogle Scholar
  14. de Klerk ML, Ramakers PMJ (1986) Monitoring population densities of the phytoseiid predator Amblyseius cucumeris and its prey after large scale introductions to control Thrips tabaci on sweet pepper. Meded Fac Landbouwwet Rijksuniv Gent 51(3a):1045–1048Google Scholar
  15. de Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:494Google Scholar
  16. Ferrero M, Gigot C, Tixier MS, van Houten YM, Kreiter S (2010) Egg hatching response to a range of air humidities for six species of predatory mites. Entomol Exp Appl 135:237–244CrossRefGoogle Scholar
  17. Gerson U, Weintraub PG (2007) Review: mites for the control of pests in protected cultivation. Pest Manag Sci 63:658–676CrossRefPubMedGoogle Scholar
  18. Gerson U, Weintraub PG (2011) Mites (acari) as a factor in greenhouse management. Annu Rev Entomol 57:229–247CrossRefPubMedGoogle Scholar
  19. Hajek A (2004) Natural enemies: an introduction to biological control. Cambridge University Press, New YorkCrossRefGoogle Scholar
  20. Heinz KM, Van Driesche RG, Parrella MP (2004) Biocontrol in protected culture. Ball Publishing, BataviaGoogle Scholar
  21. Helyer NL, Brobyn PJ (1992) Chemical control of western flower thrips (Frankliniella occidentalis Pergande). Ann Appl Biol 121:219–231CrossRefGoogle Scholar
  22. Janssen A, Willemse E, van der Hammen T (2003) Poor host plant quality causes omnivore to consume predator eggs. J Anim Ecol 72:478–483CrossRefGoogle Scholar
  23. Jensen S (2000) Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integr Pest Manag Rev 5:131–146CrossRefGoogle Scholar
  24. Jones T, Shipp JL, Scott-Dupree CD, Harris CR (2005) Influence of greenhouse microclimate on Neoseiulus (Amblyseius) cucumeris (Acari: Phytoseiidae) predation on Frankliniella occidentalis (Thysanoptera: Thripidae) and oviposition on greenhouse cucumber. J Entomol Soc Ont 136:71–83Google Scholar
  25. Karnkowski W, Trdan S (2002) Diagnostic protocols for regulated pests—Frankliniella occidentalis. OEPP/EPPO Bull 32:281–292CrossRefGoogle Scholar
  26. Katayama H (1997) Effect of temperature on development and oviposition of western flower thrips Frankliniella occidentalis (Pergande). Jpn J Appl Entomol Zool 41:225–231CrossRefGoogle Scholar
  27. Lee H-S, Gillespie DR (2010) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53:17–27CrossRefPubMedGoogle Scholar
  28. Lewis T (1997) Thrips as crop pests. CAB International, New YorkGoogle Scholar
  29. MacGill EI (1939) A gamasid mite (Typhlodromus thripsi n.sp.), a predator of Thrips tabaci Lind. Ann Appl Biol 26:309–317CrossRefGoogle Scholar
  30. Messelink GJ, van Steenpaal SEF, Ramakers PM (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biocontrol 51:753–768CrossRefGoogle Scholar
  31. Messelink GJ, van Maanen R, van Steenpaal SEF (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379CrossRefGoogle Scholar
  32. Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291CrossRefPubMedGoogle Scholar
  33. Nothnagl M, Kosiba A, Alsanius BW, Anderson P, Larsen RU (2008) Modelling population dynamics of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on greenhouse grown chrysanthemum. Eur J Hortic Sci 73:12–19Google Scholar
  34. Perdikis DC, Lykouressis DP, Economou LP (2004) Influence of light–dark phase, host plant, temperature, and their interactions on the predation rate in an insect predator. Environ Entomol 33:1137–1144CrossRefGoogle Scholar
  35. Porath A, Swirski E (1965) A survey of phytoseiid mites (Acarina: Phytoseiidae) on citrus, with a description of one new species. Isr J Agric Res 15:87–100Google Scholar
  36. Rugman-Jones PF, Hoddle MS, Stouthamer R (2010) Nuclear-mitochondrial barcoding exposes the global pest western flower thrips (Thysanoptera: Thridiae) as two sympatric cryptic species in its native California. J Econ Entomol 103:877–886CrossRefPubMedGoogle Scholar
  37. Sabelis MW (1981) Biological control of two-spotted spider mites using phytoseiid predators. Part I. Ph.D. Thesis: Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  38. Sadof CS, Sclar DC (2002) Public tolerance to defoliation and flower distortion in a public horticulture garden. J Econ Entomol 95:348–353CrossRefPubMedGoogle Scholar
  39. Shipp JL, van Houten YM (1997) Influence of temperature and vapor pressure deficit on survival of the predatory mite Amblyseius cucumeris (Acari: Phytoseiidae). Environ Entomol 26:106–113CrossRefGoogle Scholar
  40. Shipp JL, Ward KI, Gillespie TJ (1996) Influence of temperature and vapor pressure deficit on the rate of predation by the predatory mite, Amblyseius cucumeris, on Frankliniella occidentalis. Entomol Exp Appl 78:31–38CrossRefGoogle Scholar
  41. Shipp L, Johansen N, Vanninen I, Jacobson R (2009) Greenhouse climate: an important consideration when developing pest management programs for greenhouse crops. Acta Hortic 893:133–143Google Scholar
  42. Skirvin DJ, Kravar-garde L, Reynolds K, Jones J, Mead A, Fenlon J (2007) Supplemental food affects thrips predation and movement of Orius laevigatus (Hemiptera: Anthocoridae) and Neoseiulus cucumeris (Acari: Phytoseiidae). Bull Entomol Res 97:309–315CrossRefPubMedGoogle Scholar
  43. Trudgill DL, Honek A, Li D, van Straalen NM (2005) Thermal time-concepts and utility. Ann Appl Biol 146:1–14CrossRefGoogle Scholar
  44. van Houten YM, van Stratum P, Bruin J, Veerman A (1995a) Selection for non-diapause in Amblyseius cucumeris and Amblyseius barkeri and exploration of the effectiveness of selected strains for thrips control. Entomol Exp Appl 77:289–295CrossRefGoogle Scholar
  45. van Houten YM, van Rijn PCJ, Tanigoshi LK, van Stratum P, Bruin J (1995b) Preselection of predatory mites to improve year-round biological control of western flower thrips in greenhouse crops. Entomol Exp Appl 74:225–234CrossRefGoogle Scholar
  46. Whittaker MS, Kirk WDJ (2004) The effect of photoperiod on walking, feeding and oviposition in the western flower thrips. Entomol Exp Appl 111:209–214CrossRefGoogle Scholar
  47. Zhang Z-Q (2003) Mites of greenhouses: identification, biology and control. CABI International Publishing, WallingfordGoogle Scholar
  48. Zhang Y, Jewett TJ, Shipp JL (2002) Adynamic model to estimate in-canopy and leaf surface microclimate of greenhouse cucumber crops. Trans Am Soc Agric Eng 45:179–192CrossRefGoogle Scholar
  49. Zilahi-Balogh GMG, Shipp JL, Cloutier C, Brodeur J (2007) Predation by Neoseiulus cucumeris on western flower thrips, and its oviposition on greenhouse cucumber under winter vs. summer conditions in a temperate climate. Biol Control 40:160–167CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2014

Authors and Affiliations

  • Laura C. Hewitt
    • 1
  • Les Shipp
    • 2
    Email author
  • Rose Buitenhuis
    • 3
  • Cynthia Scott-Dupree
    • 1
  1. 1.School of Environmental SciencesUniversity of GuelphGuelphCanada
  2. 2.Agriculture and Agri-Food CanadaHarrowCanada
  3. 3.Vineland Research and Innovation CentreVineland StationCanada

Personalised recommendations