Advertisement

Experimental and Applied Acarology

, Volume 65, Issue 1, pp 107–124 | Cite as

Assessing the statistical relationships among water-derived climate variables, rainfall, and remotely sensed features of vegetation: implications for evaluating the habitat of ticks

  • J. Alonso-Carné
  • A. García-Martín
  • A. Estrada-Peña
Article

Abstract

Ticks are sensitive to changes in relative humidity and saturation deficit at the microclimate scale. Trends and changes in rainfall are commonly used as descriptors of field observations of tick populations, to capture the climate niche of ticks or to predict the climate suitability for ticks under future climate scenarios. We evaluated daily and monthly relationships between rainfall, relative humidity and saturation deficit over different ecosystems in Europe using daily climate values from 177 stations over a period of 10 years. We demonstrate that rainfall is poorly correlated with both relative humidity and saturation deficit in any of the ecological domains studied. We conclude that the amount of rainfall recorded in 1 day does not correlate with the values of humidity or saturation deficit recorded 24 h later: rainfall is not an adequate surrogate for evaluating the physiological processes of ticks at regional scales. We compared the Normalized Difference Vegetation Index (NDVI), a descriptor of photosynthetic activity, at a spatial resolution of 0.05°, with monthly averages of relative humidity and saturation deficit and also determined a lack of significant correlation. With the limitations of spatial scale and habitat coverage of this study, we suggest that the rainfall or NDVI cannot replace relative humidity or saturation deficit as descriptors of tick processes.

Keywords

Rainfall Saturation deficit Relative humidity NDVI Ticks 

References

  1. Barandika JF, Berriatua E, Barral M, Juste RA, Anda P, García-Pérez AL (2006) Risk factors associated with ixodid tick species distributions in the Basque region in Spain. Med Vet Entomol 20:177–188PubMedCrossRefGoogle Scholar
  2. Belozerov VN (1982) Diapause and biological rhythms in ticks. In: Obenchain FD, Galun R (eds) Physiology of ticks. Pergamon Press, Oxford, pp 469–500CrossRefGoogle Scholar
  3. Bisanzio D, Amore G, Ragagli C, Tomassone L, Bertolotti L, Mannelli A (2008) Temporal variations in the usefulness of Normalized Difference Vegetation Index as a predictor for Ixodes ricinus (Acari: Ixodidae) in a Borrelia lusitaniae focus in Tuscany, central Italy. J Med Entomol 45:547–555PubMedCrossRefGoogle Scholar
  4. Brownstein JS, Holford TR, Fish D (2003) A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111:1152–1164PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bunn AG, Goetz SJ (2006) Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density. Earth Interact 10:1–19CrossRefGoogle Scholar
  6. Bursali A, Tekin S, Keskin A, Ekici M, Dundar E (2011) Species diversity of ixodid ticks feeding on humans in Amasya, Turkey: seasonal abundance and presence of Crimean-Congo hemorrhagic fever virus. J Med Entomol 48:85–93PubMedCrossRefGoogle Scholar
  7. Cumming GS (2002) Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecol 83:255–268CrossRefGoogle Scholar
  8. Daniels TJ, Falco RC, Curran KL, Fish D (1996) Timing of Ixodes scapularis (Acari: Ixodidae) oviposition and larval activity in southern New York. J Med Entomol 33:140–147PubMedGoogle Scholar
  9. Diuk-Wasser MA, Gatewood AG, Cortinas MR, Yaremych-Hamer S, Tsao J, Kitron U, Hickling G, Brownstein JS, Walker E, Piesman J, Fish D (2006) Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Ixodidae) in the United States. J Med Entomol 43:166–176PubMedCrossRefGoogle Scholar
  10. Estrada-Peña A (1999) Geostatistics as predictive tools to estimate Ixodes ricinus (Acari: Ixodidae) habitat suitability in the western Palearctic from AVHRR satellite imagery. Exp Appl Acarol 23:337–349CrossRefGoogle Scholar
  11. Estrada-Peña A, Martinez JM, Acedo CS, Quilez J, Del Cacho E (2004) Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain). Med Vet Entomol 18:387–397PubMedCrossRefGoogle Scholar
  12. Franke J, Hildebrandt A, Dorn W (2013) Exploring gaps in our knowledge on Lyme borreliosis spirochaetes: updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick-Borne Dis 4:11–25PubMedCrossRefGoogle Scholar
  13. Gray JS (1982) The development and questing activity of Ixodes ricinus (L) (Acari, Ixodidae) under field conditions in Ireland. Bull Entomol Res 72:263–270CrossRefGoogle Scholar
  14. Gray JS (1991) The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol 79:323–333Google Scholar
  15. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos (1984–2012) 113:D20Google Scholar
  16. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  17. Ichii L, Kawabata A, Yamaguchi Y (2002) Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int J Remote Sens 23:3873–3878CrossRefGoogle Scholar
  18. Jaenson TG, Eisen L, Comstedt P, Mejlon HA, Lindgren E, Bergström S, Olsen B (2009) Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med Vet Entomol 23:226–237PubMedCrossRefGoogle Scholar
  19. Kahl O, Alidousti I (1997) Bodies of liquid water as a source of water gain for Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol 21:731–746CrossRefGoogle Scholar
  20. Kahl O, Knülle W (1988) Water vapour uptake from subsaturated atmospheres by engorged immature ixodid ticks. Exp Appl Acarol 4:73–83PubMedCrossRefGoogle Scholar
  21. Kawabata A, Ichii K, Yamaguchi Y (2001) Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int J Remote Sens 22:1377–1382CrossRefGoogle Scholar
  22. Kerr YH, Waldteufel P, Wigneron JP, De lwart S, Cabot F, Boutin J, Escorihuela MJ, Font J, Reul N, Gruhier C, Juglea SE, Drinkwater MR, Hahne A, Martin-Neira M, Mecklenburg S (2010) The SMOS Mission: new tool for monitoring key elements of the global water cycle. Proc IEEE 98:666–687CrossRefGoogle Scholar
  23. Kitron U, Kazmierczak JJ (1997) Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol 145:558–566PubMedCrossRefGoogle Scholar
  24. Knülle W, Wharton GW (1964) Equilibrium humidities in arthropods and their ecological significance. Acarologia 6:299–306Google Scholar
  25. Lees AD (1946) The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37:1–20PubMedCrossRefGoogle Scholar
  26. Lees AD, Milne A (1951) The seasonal and diurnal activities of individual sheep ticks (Ixodes ricinus L). Parasitology 41:189–208PubMedCrossRefGoogle Scholar
  27. Leschnik M, Kirtz G, Tichy A, Leidinger E (2008) Seasonal occurrence of canine babesiosis is influenced by local climate conditions. Int J Med Microbiol 298:243–248CrossRefGoogle Scholar
  28. Li B, Tao S, Dawson RW (2002) Relations between AVHRR NDVI and ecoclimatic parameters in China. Int J Remote Sens 23:989–999CrossRefGoogle Scholar
  29. Lindsay LR, Mathison SW, Barker IK, Mcewen SA, Gillespie TJ, Surgeoner GA (1999) Microclimate and habitat in relation to Ixodes scapularis (Acari: Ixodidae) populations on Long Point, Ontario, Canada. J Med Entomol 36:255–262PubMedGoogle Scholar
  30. Mücher CA, Klijn JA, Wascher DM, Schaminée JHJ (2010) A new European Landscape Classification (LANMAP): a transparent, flexible and user-oriented methodology to distinguish landscapes. Ecol Indic 10:87–103CrossRefGoogle Scholar
  31. Ogden NH, St-Onge L, Barker IK, Brazeau S, Bigras-Poulin M, Charron DF, Francis CM, Heagy A, Lindsay LR, Maarouf A, Michel P, Milord F, O’Callaghan CJ, Trudel L, Thompson RA (2008) Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change. Int J Health Geogr 7:24–35PubMedCentralPubMedCrossRefGoogle Scholar
  32. Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20:328–336PubMedCrossRefGoogle Scholar
  33. Pegram RG, Banda DS (1990) Ecology and phenology of cattle ticks in Zambia: development and survival of free-living stages. Exp Appl Acarol 8:291–301PubMedCrossRefGoogle Scholar
  34. Perret JL, Guigoz E, Rais O, Gern L (2000) Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res 86:554–557PubMedCrossRefGoogle Scholar
  35. Perret JL, Guerin PM, Diehl PA, Vlimant M, Gern L (2003) Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus. J Exp Biol 206:1809–1815PubMedCrossRefGoogle Scholar
  36. Perret JL, Rais O, Gern L (2004) Influence of climate on the proportion of Ixodes ricinus nymphs and adults questing in a tick population. J Med Entomol 41:361–365PubMedCrossRefGoogle Scholar
  37. Perry BD, Kruska R, Lessard P, Norval RAI, Kundert K (1991) Estimating the distribution and abundance of Rhipicephalus appendiculatus in Africa. Prev Vet Med 11:261–268CrossRefGoogle Scholar
  38. Petney TN, Horak IG, Rechav Y (1987) The ecology of the African vectors of heartwater, with particular reference to Amblyomma hebraeum and Amblyomma variegatum. Ond J Vet Res 54:381–395Google Scholar
  39. Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510PubMedCrossRefGoogle Scholar
  40. Randolph SE (1993) Climate, satellite imagery and the seasonal abundance of the tick Rhipicephalus appendiculatus in southern Africa: a new perspective. Med Vet Entomol 7:243–258PubMedCrossRefGoogle Scholar
  41. Randolph SE (2000) Ticks and tick-borne disease systems in space and from space. Adv Parasitol 47:217–243PubMedCrossRefGoogle Scholar
  42. Randolph SE (2002) Predicting the risk of tick-borne diseases. Int J Med Microbiol 291:6–10PubMedCrossRefGoogle Scholar
  43. Randolph SE (2009) Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology. Parasitology 136:1403–1413PubMedCrossRefGoogle Scholar
  44. Randolph SE, Green RM, Hoodless AN, Peacey MF (2002) An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol 32:979–989PubMedCrossRefGoogle Scholar
  45. Rao VB, Cavalcanti IFA, Hada K (1996) Annual variation of rainfall over Brazil and water vapor characteristics over South America. J Geophys Res Atmos 101:26539–26551CrossRefGoogle Scholar
  46. Rudolph D, Knülle W (1974) Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature 249:84–85PubMedCrossRefGoogle Scholar
  47. Schultz PA, Halpert MS (1993) Global correlation of temperature, NDVI and precipitation. Adv Space Res 13:277–280CrossRefGoogle Scholar
  48. Sonenshine DE, Mather TN (1994) Ecological dynamics of tick-borne zoonoses. Oxford University Press, OxfordGoogle Scholar
  49. Thornton PE, Hasenauer H, White MA (2000) Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria. Agric For Meteorol 104:255–271CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. Alonso-Carné
    • 1
    • 3
    • 4
  • A. García-Martín
    • 2
    • 3
  • A. Estrada-Peña
    • 4
  1. 1.Department of Geography and Territorial PlanningUniversity of ZaragozaSaragossaSpain
  2. 2.Centro Universitario de la Defensa de ZaragozaSaragossaSpain
  3. 3.GEOFOREST Group - Instituto Universitario de Ciencias Ambientales (IUCA)University of ZaragozaSaragossaSpain
  4. 4.Department of Animal Pathology, Faculty of Veterinary MedicineUniversity of ZaragozaSaragossaSpain

Personalised recommendations