Experimental and Applied Acarology

, Volume 65, Issue 1, pp 89–106 | Cite as

Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa

  • Ursula Strauss
  • Christian W. W. PirkEmail author
  • Robin M. Crewe
  • Hannelie Human
  • Vincent Dietemann


The devastating effects of Varroa destructor Anderson & Trueman on European honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitised individuals when they feed on them, they also transmit viruses and other pathogens, weaken colonies and can ultimately cause their death. Nevertheless, not all honeybee colonies are doomed once Varroa mites become established. Some populations, such as the savannah honeybee, A. m. scutellata, have become tolerant after the introduction of the parasite and are able to withstand the presence of these mites without the need for acaricides. In this study, we measured daily Varroa mite fall, Varroa infestation rates of adult honeybees and worker brood, and total Varroa population size in acaricide treated and untreated honeybee colonies. In addition, honeybee colony development was compared between these groups in order to measure the cost incurred by Varroa mites to their hosts. Daily Varroa mite fall decreased over the experimental period with different dynamics in treated and untreated colonies. Varroa infestation rates in treated adult honeybees and brood were lower than in untreated colonies, but not significantly so. Thus, indicating a minimal benefit of treatment thereby suggesting that A. m. scutellata have the ability to maintain mite populations at low levels. We obtained baseline data on Varroa population dynamics in a tolerant honeybee over the winter period. Varroa mites appeared to have a low impact on this honeybee population, given that colony development was similar in the treated and untreated colonies.


Apis mellifera scutellata Varroa destructor Honeybee Mite Infestation Tolerance 



We thank Anton Schehle and Brett Falconer for providing honeybee colonies as well as Kendall Richardson for assistance in the field and laboratory. The financial assistance of the University of Pretoria and the National Research Foundation (NRF) for this research is acknowledged. Opinions expressed and conclusions arrived at, are those of the authors.


  1. Allsopp M (2006) Analysis of Varroa destructor infestation of southern African honeybee populations. M.Sc. thesis, University of PretoriaGoogle Scholar
  2. Berthoud H, Imdorf A, Haueter M, Radloff SE, Neumann P (2010) Virus infections and winter losses of honey bee colonies (Apis mellifera). J Apic Res 49:60–65CrossRefGoogle Scholar
  3. Boecking O, Ritter W (1993) Grooming and removal behaviour of Apis mellifera intermissa in Tunisia against Varroa jacobsoni. J Apic Res 32:127–134Google Scholar
  4. Branco MR, Kidd NAC, Pickard RS (2006) A comparative evaluation of sampling methods for Varroa destructor (Acari: Varroidae) population estimation. Apidologie 37:452–461CrossRefGoogle Scholar
  5. Büchler R, Drescher W, Tornier I (1992) Grooming behaviour of Apis cerana, Apis mellifera and Apis dorsata and its effect on the parasitic mites Varroa jacobsoni and Tropilaelaps clareae. Exp Appl Acarol 16:313–319CrossRefGoogle Scholar
  6. Calatayud F, Verdú MJ (1994) Survival of the mite Varroa jacobsoni Oud. (Mesostigmata: Varroidae) in broodless colonies of the honey bee Apis mellifera L. (Hymenoptera: Apidae). Exp Appl Acarol 18:603–612Google Scholar
  7. Calderón RA, van Veen JW, Sommeijer MJ, Sanchez LA (2010) Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera). Exp Appl Acarol 50:281–297PubMedCrossRefGoogle Scholar
  8. Camazine S (1986) Differential reproduction of the mite, Varroa jacobsoni (Mesostigmata: Varroidae), on Africanized and European honey bees (Hymenoptera: Apidae). Ann Entomol Soc Am 79:801–803Google Scholar
  9. Camazine S, Morse RA (1988) The Africanized honeybee: the epithet “killer bee” is undeserved. Am Sci 76:464–471Google Scholar
  10. Carneiro FE, Torres RR, Strapazzon R, Ramirez SA, Guerra JCV, Koling DF, Moretto G (2007) Changes in the reproductive ability of the mite Varroa destructor (Anderson and Trueman) in Africanized honey bees (Apis mellifera L.) (Hymenoptera: Apidae) colonies in southern Brazil. Neotrop Entomol 36:949–952PubMedCrossRefGoogle Scholar
  11. Corrêa-Marques MH, De Jong D (1998) Uncapping of worker bee brood, a component of the hygienic behaviour of Africanized honey bees against the mite Varroa jacobsoni Oud. Apidologie 29:283–289CrossRefGoogle Scholar
  12. Corrêa-Marques MH, Medina ML, Martin SJ, De Jong D (2003) Comparing data on the reproduction of Varroa destructor. Genet Mol Res 2:1–6PubMedGoogle Scholar
  13. De Jong D (1988) Varroa jacobsoni does reproduce in worker cells of Apis cerana in South Korea. Apidologie 19:241–244CrossRefGoogle Scholar
  14. De Jong D, Soares AEE (1997) An isolated population of Italian bees that has survived Varroa jacobsoni infestation without treatment for over 12 years. Am Bee J 137:742–747Google Scholar
  15. De Jong D, Goncalves LS, Morse RA (1984) Dependence on climate of the virulence of Varroa jacobsoni. Bee World 65:117–121Google Scholar
  16. Delaplane, KS, van der Steen J, Guzman-Novoa E (2013) Standard methods for estimating strength parameters of Apis mellifera colonies. In: Dietemann V, Ellis JD, Neumann P (eds) The COLOSS BEEBOOK, volume I: standard methods for Apis mellifera research. J Apic Res 52(1). doi: 10.3896/IBRA.
  17. Dietemann V, Pflugfelder J, Anderson D, Charrière J-D, Chejanovsky N, Dainat B, de Miranda JR, Delaplane K, Dillier F-X, Fuchs S, Gallmann P, Gauthier L, Imdorf A, Koeniger N, Kralj J, Meikle W, Pettis JS, Rosenkranz P, Sammataro D, Smith D, Yañez O, Neumann P (2012) Varroa destructor: research avenues towards sustainable control. J Apic Res 51:125–132CrossRefGoogle Scholar
  18. Dietemann V, Nazzi F, Martin SJ, Anderson D, Locke B, Delaplane KS, Wauquiez Q, Tannahill C, Frey E, Ziegelmann B, Rosenkranz P, Ellis JD (2013) Standard methods for varroa research. In: Dietemann V, Ellis JD, Neumann P (eds) The COLOSS BEEBOOK, volume II: standard methods for Apis mellifera pest and pathogen research. J Apic Res 52(1). doi: 10.3896/IBRA.
  19. Ellis JD (2008) Varroa Mite, Varroa destructor Anderson and Trueman (Acari: Varroidae). In: Capinera JL (ed) Encyclopedia of entomology. Springer, Berlin, pp 4041–4048Google Scholar
  20. Fletcher DJC (1975) New perspectives in the causes of absconding in the African bee (Apis mellifera adansonii L.). Part 1. S Afr Bee J 47:11–14Google Scholar
  21. Fletcher DJC (1978) The African bee, Apis mellifera adansonii, in Africa. Annu Rev Entomol 23:151–171CrossRefGoogle Scholar
  22. Francis RM, Nielsen SL, Kryger P (2013) Varroa-virus interaction in collapsing honey bee colonies. PLoS One 8:e57540PubMedCentralPubMedCrossRefGoogle Scholar
  23. Francoy TM, Wittmann D, Steinhage V, Drauschke M, Müller S, Cunha DR, Nascimento AM, Figueiredo VLC, Simões ZLP, De Jong D, Arias MC, Gonçalves LS (2009) Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization. Genet Mol Res 8:709–717PubMedCrossRefGoogle Scholar
  24. Frazier M, Muli E, Conklin T, Schmehl D, Torto B, Frazier J, Tumlinson J, Evans JD, Raina S (2010) A scientific note on Varroa destructor found in East Africa; threat or opportunity? Apidologie 41:463–465CrossRefGoogle Scholar
  25. Fries I, Raina S (2003) American foulbrood and African honey bees (Hymenoptera: Apidae). J Econ Entomol 96:1641–1646PubMedCrossRefGoogle Scholar
  26. Fries I, Huazhen W, Wei S, Jin CS (1996) Grooming behavior and damaged mites (Varroa jacobsoni) in Apis cerana cerana and Apis mellifera ligustica. Apidologie 27:3–11CrossRefGoogle Scholar
  27. Fries I, Imdorf A, Rosenkranz P (2006) Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate. Apidologie 37:564–570CrossRefGoogle Scholar
  28. Garrido C, Rosenkranz P, Paxton RJ, Gonçalves LS (2003) Temporal changes in Varroa destructor fertility and haplotype in Brazil. Apidologie 34:535–541CrossRefGoogle Scholar
  29. Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R, Berg S, Ritter W, Mühlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–352CrossRefGoogle Scholar
  30. Gerig L (1983) Lehrgang zur erfassung der volksstärke. Schweiz. Bienen-Zeitung 106:199–204Google Scholar
  31. Guerra JCV, Gonçalves LS, De Jong D (2000) Africanized honey bees (Apis mellifera L.) are more efficient at removing worker brood artificially infested with the parasitic mite Varroa jacobsoni Oudemans than are Italian bees or Italian/Africanized hybrids. Genet Mol Biol 23:89–92CrossRefGoogle Scholar
  32. Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, BerlinCrossRefGoogle Scholar
  33. Imdorf A, Maquelin C (1993) Volksschätzung im zeitigen Frühjahr, Schweiz. Bienenztg 116:392–395Google Scholar
  34. Kerr WE (1967) The history of the introduction of African bees to Brazil. S Afr Bee J 39:3–5Google Scholar
  35. Koeniger N, Koeniger G, Delfinado-Baker M (1983) Observations on mites of the Asian honeybee species (Apis cerana, Apis dorsata, Apis florea). Apidologie 14:197–204CrossRefGoogle Scholar
  36. Kraus FB, Franck P, Vandame R (2007) Asymmetric introgression of African genes in honeybee populations (Apis mellifera L.) in Central Mexico. Heredity 99:233–240PubMedCrossRefGoogle Scholar
  37. Le Conte Y, de Vaublanc G, Crauser D, Jeanne F, Rousselle JC, Bécard J-M (2007) Honey bee colonies that have survived Varroa destructor. Apidologie 38:566–572CrossRefGoogle Scholar
  38. Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41:353–363CrossRefGoogle Scholar
  39. Locke B, Fries I (2011) Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42:533–542CrossRefGoogle Scholar
  40. Locke B, Le Conte Y, Crauser D, Fries I (2012) Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations. Ecol Evol 2:1144–1150PubMedCentralPubMedCrossRefGoogle Scholar
  41. Martin SJ (1998) A population model for the ectoparasitic mite Varroa jacobsoni in honey bee (Apis mellifera) colonies. Ecol Model 109:267–281CrossRefGoogle Scholar
  42. Martin SJ, Kryger P (2002) Reproduction of Varroa destructor in South African honey bees: does cell space influence Varroa male survivorship? Apidologie 33:51–61CrossRefGoogle Scholar
  43. Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, Nikaido S, Schroeder DC (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336:1304–1306PubMedCrossRefGoogle Scholar
  44. Mcnally LC, Schneider SS (1992) Seasonal cycles of growth, development and movement of the African honey bee, Apis mellifera scutellata, in Africa. Insectes Soc 39:167–179CrossRefGoogle Scholar
  45. Medina LM, Martin SJ (1999) A comparative study of Varroa jacobsoni reproduction in worker cells of honey bees (Apis mellifera) in England and Africanized bees in Yucatan, Mexico. Exp Appl Acarol 23:659–667CrossRefGoogle Scholar
  46. Medina LM, Martin SJ, Espinosa-Montaño L, Ratnieks FLW (2002) Reproduction of Varroa destructor in worker brood of Africanized honey bees (Apis mellifera). Exp Appl Acarol 27:79–88PubMedCrossRefGoogle Scholar
  47. Michener CD (1973) The Brazilian honeybee. Bioscience 23:523–527CrossRefGoogle Scholar
  48. Mondragón L, Spivak M, Vandame R (2005) A multifactorial study of the resistance of honeybees Apis mellifera to the mite Varroa destructor over one year in Mexico. Apidologie 36:345–358CrossRefGoogle Scholar
  49. Mondragón L, Martin SJ, Vandame R (2006) Mortality of mite offspring: a major component of Varroa destructor resistance in a population of Africanized bees. Apidologie 37:67–74CrossRefGoogle Scholar
  50. Moritz RFA (1985) Heritability of the postcapping stage in Apis mellifera and its relation to varroatosis resistance. J Hered 76:267–270Google Scholar
  51. Moritz RFA, Hänel H (1984) Restricted development of the parasitic mite Varroa jacobsoni Oud. in the Cape honey bee, Apis mellifera capensis Esch. Z Angew Entomol 97:91–95CrossRefGoogle Scholar
  52. Moritz RFA, Härtel S, Neumann P (2005) Global invasions of the western honey bee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12:289–301CrossRefGoogle Scholar
  53. Page RE (1998) Blessing or curse? Varroa mite impacts Africanized bee spread and beekeeping. Calif Agric 52:9–13CrossRefGoogle Scholar
  54. Peng YS, Fang Y, Xu S, Ge L (1987) The resistance mechanism of the Asian honey bee Apis cerana Fabr., to an ectoparasitic mite Varroa jacobsoni Oudemans. J Invertebr Pathol 49:54–60CrossRefGoogle Scholar
  55. Pirk CWW, Human H, Crewe RM, vanEngelsdorp D (2014) A survey of managed honey bee colony losses in the Republic of South Africa—2009 to 2011. J Apic Res 53:35–42CrossRefGoogle Scholar
  56. Rath W (1999) Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie 30:97–110CrossRefGoogle Scholar
  57. Rath W, Drescher W (1990) Response of Apis cerana Fabr. towards brood infested with Varroa jacobsoni Oud., and infestation rate of colonies in Thailand. Apidologie 21:311–321CrossRefGoogle Scholar
  58. Rosenkranz P (1999) Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud. in South America. Apidologie 30:159–172CrossRefGoogle Scholar
  59. Rosenkranz P, Engels W (1994) Infertility of Varroa jacobsoni females after invasion into Apis mellifera worker brood as a tolerance factor against varroatosis. Apidologie 25:402–411CrossRefGoogle Scholar
  60. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:96–119CrossRefGoogle Scholar
  61. Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376CrossRefGoogle Scholar
  62. Seeley TD (2007) Honey bees of the Arnot Forest: a population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38:19–29CrossRefGoogle Scholar
  63. Shabanov M, Nedyalkov S, Toshkov AL (1978) Varroatosis—a dangerous parasitic disease on bees. Am Bee J 118:402-403, 407Google Scholar
  64. Sheppard WS, Smith DR (2000) Identification of African-derived bees in the Americas: A survey of methods. Ann Entomol Soc Am 93:159–176CrossRefGoogle Scholar
  65. Sheppard WS, Soares AEE, De Jong D, Shimanuki H (1991) Hybrid status of honey bee populations near the historic origin of Africanization in Brazil. Apidologie 22:643–652CrossRefGoogle Scholar
  66. Solignac M, Cornuet J, Vautrin D, Le Conte Y, Anderson D, Evans JD, Cros-Arteil S, Navajas M (2005) The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honey bee (Apis mellifera), are two partly isolated clones. Proc R Soc Biol Sci Ser B 272:411–419CrossRefGoogle Scholar
  67. Spleen AM, Lengerich EJ, Rennich K, Caron DM, Rose R, Pettis JS, Henson M, Wilkes JT, Wilson ME, Stitzinger J, Lee K, Andree M, Snyder R, vanEngelsdorp D (2013) A national survey of managed honey bee 2011-2012 winter colony losses in the United States: results from the Bee Informed Partnership. J Apic Res 52:44–53CrossRefGoogle Scholar
  68. Steinhauer NA, Rennich K, Wilson ME, Caron DM, Lengerich EJ, Pettis JS, Rose R, Skinner JA, Tarpy DR, Wilkes JT, van Engelsdorp D (2014) A national survey of managed honey bee 2012–2013 annual colony losses in the USA: results from the Bee Informed Partnership. J Apic Res 53:1–18CrossRefGoogle Scholar
  69. Strauss U, Human H, Gauthier L, Crewe RM, Dietemann V, Pirk CWW (2013) Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). J Invertebr Pathol 114:45–52PubMedCrossRefGoogle Scholar
  70. Swart DJ (2001) Specialized management. In: Johannsmeier MF (ed) Beekeeping in South Africa, plant protection handbook no. 14. Agricultural Research Council, Pretoria, pp 85–94Google Scholar
  71. Tribe GD, Allsopp M (2001) Life history of the honeybee colony. In: Johannsmeier MF (ed) Beekeeping in South Africa, plant protection handbook no. 14. Agricultural Research Council, Pretoria, pp 17–26Google Scholar
  72. van Dooremalen C, Stam E, Gerritsen L, Cornelissen B, van der Steen J, van Langevelde F, Blacquière T (2013) Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. J Insect Physiol 59:487–493PubMedCrossRefGoogle Scholar
  73. Vandame R, Colin ME, Otero-Colina G (1999) Africanized honey bees tolerance to Varroa in Mexico: mite infertility is not the main tolerance factor. Apiacta 1:12–20Google Scholar
  74. Vandame R, Morand S, Colin ME, Belzunces LP (2002) Parasitism in the social bee Apis mellifera: quantifying costs and benefits of behavioral resistance to Varroa destructor mites. Apidologie 33:433–445CrossRefGoogle Scholar
  75. Visscher PK, Vetter RS, Baptista FC (1997) Africanized bees, 1990–1995: initial rapid invasion has slowed in the US. Calif Agric 51:22–25CrossRefGoogle Scholar
  76. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Spencer Johnston J, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645PubMedCrossRefGoogle Scholar
  77. Winston ML (1992) The biology and management of Africanized honey bees. Annu Rev Entomol 37:173–193CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ursula Strauss
    • 1
  • Christian W. W. Pirk
    • 1
    Email author
  • Robin M. Crewe
    • 1
  • Hannelie Human
    • 1
  • Vincent Dietemann
    • 1
    • 2
  1. 1.Social Insect Research Group, Department of Zoology and EntomologyUniversity of PretoriaHatfield, PretoriaSouth Africa
  2. 2.Swiss Bee Research CentreBernSwitzerland

Personalised recommendations