Skip to main content
Log in

Acaricidal activity and sublethal effects of an oxymatrine-based biopesticide on two-spotted spider mite (Acari: Tetranychidae)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Lethal and sublethal effects of the biopesticide Kingbo (oxymatrine 0.2 % + psoralen 0.4 %) on the two-spotted spider mite (Tetranychus urticae Koch) were investigated in laboratory bioassays. The biopesticide was applied to bean leaf discs or primary leaves by using a Potter spray tower. Acute toxicity tests showed no significant ovicidal action: toxic effect (LC50 = 55.49 μl/l) was the result of a residual activity against larvae that hatched from the treated eggs. Preovipositional females and female teleiochrysales showed similar susceptibility (LC50 = 52.68 and 59.03 μl/l, respectively), whereas larvae, protonymphs and female deutonymphs were the most susceptible stages (LC50 = 6.88, 13.03, and 8.80 μl/l, respectively). In a choice test, females preferred the untreated halves of leaves over the halves treated with 2,000, 1,000, and 500 μl/l in the first 24 h, and their oviposition in those treatments was significantly greater on the untreated halves after 24 and 48 h, as well as the summed oviposition over 72 h. Viability and reproduction of survivors, as well as population growth, were strongly affected after the treatments of preovipositional females and female teleiochrysales with 100, 50 and 25 μl/l. On the other hand, sublethal effects on the females that survived treatment at the egg stage or reached adulthood from the eggs laid on the treated surface (treatments with 50 and 25 μl/l) were significantly weaker. Acaricidal and sublethal effects of the biopesticide Kingbo were discussed as a starting point for further research aimed to improve management of T. urticae populations. Regulatory issues and safety concerns regarding further commercialization of this biopesticide are addressed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Mageed AEM, Shalaby SEM (2011) Toxicity and biochemical impacts of some new insecticide mixtures on cotton leafworm Spodoptera littoralis (Boisd.). Plant Prot Sci 47:166–175

    CAS  Google Scholar 

  • Attia S, Grissa KL, Lognay G, Bitume E, Hance T, Mailleux AC (2013) A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. J Pest Sci 86:361–386

    Article  Google Scholar 

  • Azzam HS, Goertz C, Fritts M, Jonas WB (2007) Natural products and chronic hepatitis C virus. Liver Int 27:17–25

    Article  PubMed  CAS  Google Scholar 

  • Bailey A, Chandler D, Grant WP, Greaves J, Prince G, Tatchell M (2010) Biopesticides—pest management and regulation. CAB International, Wallingford

    Book  Google Scholar 

  • Berdegué M, White KK, Trumble JT (1997) Feeding deterrence of Spodoptera exigua (Lepidoptera: Noctuidae) larvae by low concentrations of linear furanocoumarins. Environ Entomol 26:912–919

    Google Scholar 

  • Bermúdez-Torres K, Herrera JM, Brito RF, Wink M, Legal L (2009) Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda. Biocontrol 54:459–466

    Article  Google Scholar 

  • Biondi A, Zappalà L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8(9):e76548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blūmel S, Hausdorf H (2002) Results of the 8th and 9th IOBC Joint Pesticides Testing Programme: Persistence test with Phytoseiulus persimilis Athias Henriot (Acari: Phytoseiidae). IOBC wprs Bull 25:43–51

    Google Scholar 

  • Calgano MP, Coll J, Lloria J, Faini F, Alonso-Amelot ME (2002) Evaluation of synergism in the feeding deterrence of some furanocoumarins on Spodoptera littoralis. J Chem Ecol 28:175–191

    Article  Google Scholar 

  • Carey JR (1982) Demography of the twospotted spider mite Tetranychus urticae Koch. Oecologia 52:389–395

    Article  Google Scholar 

  • Carey JR (1993) Applied demography for biologists, with special emphasis on insects. Oxford University Press, New York

    Google Scholar 

  • Casida JE (2012) The greening of pesticide–environment interactions: some personal observations. Environ Health Persp 120:487–493

    Article  CAS  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366:1987–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Dekeyser MA (2005) Acaricide mode of action. Pest Manag Sci 61:103–110

    Article  PubMed  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  PubMed  CAS  Google Scholar 

  • Dimetry NZ, Amer SAA, Reda AS (1993) Biological activity of two neem seed kernel extracts against the two-spotted spider mite Tetranychus urticae Koch. J Appl Entomol 116:308–312

    Article  Google Scholar 

  • Duso C, Malagnini V, Pozzebon A, Castagnoli M, Liguori M, Simoni S (2008) Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). Biol Control 47:16–21

    Article  Google Scholar 

  • EFSA (European Food Safety Authority) (2011) Conclusion on the peer review of the pesticide risk assessment of the active substance azadirachtin. EFSA J 9(3):1858

    Google Scholar 

  • EPPO (European and Mediterranean Plant Protection Organization) (2014) New EU plant protection products legislation. https://www.eppo.int/PPPRODUCTS/information/new_eu_regulations.htm

  • Fu Y, Wang C, Ye F (2005) The applications of Sophora flavescens Ait. alkaloids in China. Pestic Sci Admin 26:30–33

    Google Scholar 

  • Hoy MA (2011) Agricultural acarology—introduction to integrated mite management. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hoy CW, Head GP, Hall FR (1998) Spatial heterogeneity and insect adaptation to toxins. Annu Rev Entomol 43:571–594

    Article  PubMed  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Campbell CAM, Pye BJ, Maniar SP (1996) Repellent and oviposition-deterring effects of hop beta-acids on the two-spotted spider mite Tetranychus urticae. Pestic Sci 47:165–169

    Article  CAS  Google Scholar 

  • Kim DI, Park JD, Kim SG, Kuk H, Jang MS, Kim SS (2005) Screening of some crude plant extracts for their acaricidal and insecticidal efficacies. J Asia-Pacific Entomol 8:93–100

    Article  Google Scholar 

  • Kim MK, Sim C, Shin D, Suh E, Cho K (2006) Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Prot 25:542–548

    Article  CAS  Google Scholar 

  • Koul O (2008) Phytochemicals and insect control: an antifeedant approach. Crit Rev Plant Sci 27:1–24

    Article  CAS  Google Scholar 

  • Kumral NA, Çobanoğlu S, Yalcin C (2010) Acaricidal, repellent and oviposition deterrent activities of Datura stramonium L. against adult Tetranychus urticae (Koch). J Pest Sci 83:173–180

    Article  Google Scholar 

  • Kumral NA, Çobanoğlu S, Yalcin C (2013) Sub-lethal and lethal effects of Datura stramonium L. leaf extracts on the European red mite Panonychus ulmi (Koch) (Acari: Tetranychidae) and its predator, Stethorus gilvifrons (Muls.) (Col.: Coccinellidae). Int J Acarol 39:494–501

    Article  Google Scholar 

  • Li J, Margolies DC (1993) Effects of mite age, mite density and host quality on aerial dispersal behaviour in the twospotted spider mite. Entomol Exp Appl 68:79–86

    Article  Google Scholar 

  • Liu LZ, Goh SH, Ho SH (2007) Screening of Chinese medicinal herbs for bioactivity against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J Stored Prod Res 43:290–296

    Article  Google Scholar 

  • Liu L, Alam MS, Hirata K, Matsuda K, Ozoe Y (2008) Actions of quinolizidine alkaloids on Periplaneta americana nicotinic acetylcholine receptors. Pest Manag Sci 64:1222–1228

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xu Y, Ji W, Li X, Sun B, Gao Q, Su C (2014) Anti-tumor activities of matrine and oxymatrine: literature review. Tumor Biol. doi:10.1007/s13277-014-1680-z

    Google Scholar 

  • Luk JM, Wang X, Liu P, Wong KF, Chan KL, Tong Y, Hiu CK, Lau GK, Fan ST (2007) Traditional Chinese herbal medicines for treatment of liver fibrosis and cancer: from laboratory discovery to clinical evaluation. Liver Int 27:879–890

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Li Y, Mu L, Chiu SF (1999) Toxicity of cytisine against mustard aphid Lipaphis erysimi Kaltenbach (Homoptera: Aphididae) and its effects on esterases. Pestic Biochem Physiol 65:1–5

    Article  CAS  Google Scholar 

  • Mao L, Henderson G (2007) Antifeedant activity and acute and residual toxicity of alkaloids from Sophora flavescens (Leguminosae) against Formosan subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 100:866–870

    Article  PubMed  CAS  Google Scholar 

  • Marčić D (2012) Acaricides in modern management of plant feeding mites. J Pest Sci 85:395–408

    Article  Google Scholar 

  • Marčić D, Prijović M, Drobnjaković T, Međo I, Perić P, Milenković S (2012) Greenhouse and field evaluation of two biopesticides against Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pestic Phytomed 27:313–320

    Article  Google Scholar 

  • Marčič D, Ogurlić I, Mutavdžić S, Perić P (2010) The effects of spiromesifen on life history traits and population growth of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 50:255–267

    Article  PubMed  Google Scholar 

  • Miresmailli S, Isman MB (2014) Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci 19:29–35

    Article  PubMed  CAS  Google Scholar 

  • Potter DA, Wrensch DL, Johnston DE (1976) Aggression and mating success in male spider mites. Science 193:160–161

    Article  PubMed  CAS  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason T (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:403–424

    Article  Google Scholar 

  • Rhodes EM, Liburd OE, Kelts C, Rondon SI, Francis RR (2006) Comparison of single and combination treatments of Phytoseiulus persimilis, Neoseiulus californicus, and Acramite (bifenazate) for control of twospotted spider mites in strawberries. Exp Appl Acarol 39:213–225

    Article  PubMed  CAS  Google Scholar 

  • Robertson JL, Russel RM, Preisler HK, Savin NE (2007) Pesticide bioassays with arthropods, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Roh HS, Lim EG, Kim J, Park CG (2011) Acaricidal and oviposition deterring effects of santalol identified in sandalwood oil against two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). J Pest Sci 84:495–501

    Article  Google Scholar 

  • Roh HS, Park KC, Park CG (2012) Repellent effect of santalol from sandalwood oil against Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 105:379–385

    Article  PubMed  Google Scholar 

  • Roh HS, Li BH, Park CG (2013) Acaricidal and repellent effects of myrtacean essential oils and their major constituents against Tetranychus urticae (Tetranychidae). J Asia-Pacific Entomol 16:245–249

    Article  CAS  Google Scholar 

  • Sabelis MW (1985) Reproductive strategies. In: Helle W, Sabelis MW (eds) Spider mites, their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 265–278

    Google Scholar 

  • Satoh Y, Yano S, Tahafuji A (2001) Mating strategy of spider mite Tetranychus urticae (Acari: Tetranychidae) males: postcopulatory guarding to assure paternity. Appl Entomol Zool 36:41–45

    Article  Google Scholar 

  • Shields VDC, Smith KP, Arnold NS, Gordon IM, Shaw TE, Waraneh D (2008) The effect of varying alkaloid concentrations on the feeding behavior of gypsy moth larvae, Lymantria dispar (L.) (Lepidoptera: Lymantridae). Arthropod Plant Interact 2:101–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Stark JD, Banken JAO (1999) Importance of population structure at the time of toxicant exposure. Ecotoxicol Environ Saf 42:282–287

    Article  PubMed  CAS  Google Scholar 

  • Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519

    Article  PubMed  CAS  Google Scholar 

  • Stark JD, Tanigoshi L, Bounfour M, Antonelli A (1997) Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotoxicol Environ Saf 37:273–279

    Article  PubMed  CAS  Google Scholar 

  • Stavrinides MC, Mills NJ (2009) Demographic effects of pesticides on biological control of Pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus occidentalis). Biol Control 48:267–273

    Article  CAS  Google Scholar 

  • Stern RS (2007) Psoralen and ultraviolet A light therapy for psoriasis. N Engl J Med 357:682–690

    Article  PubMed  CAS  Google Scholar 

  • Stern RS (2012) The risk of squamous cell and basal cell cancer associated with psoralen and ultraviolet A therapy: a 30-year prospective study. J Am Acad Dermatol 66:553–562

    Article  PubMed  CAS  Google Scholar 

  • Sundaram KMS, Sloane L (1995) Effects of pure and formulated azadirachtin, a neem-based biopesticide, on the phytophagous spider mite, Tetranychus urticae Koch. J Environ Sci Health B 30:801–814

    Article  Google Scholar 

  • Tabassum K, Maruthi Ram G (2004) Bioefficacy of Oxymatrine 1.2% EC for management of shoot and fruit borer (Leucinodes orbonalis) and Red spider mite (Tetranychus urticae) on brinjal (Solanum melongena L.). Pestology 28:37–39

    CAS  Google Scholar 

  • Tomlin CDS (2006) The pesticide manual, 14th edn. BCPC, Alton

    Google Scholar 

  • US EPA (United States Environmental Protection Agency) (2014) Registering Pesticides. http://www.epa.gov/pesticides/regulating/registering/. Last updated 29/05/2014

  • Van Leeuwen T, Vontas J, Tsagkarakou A, Tirry L (2009) Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Dordrecht, pp 347–393

    Chapter  Google Scholar 

  • Villaverde JJ, Sevilla-Morán B, Sandin-Espaňa P, López-Goti C, Alonso-Prados JL (2014) Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag Sci 70:2–5

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wang R, Zhang Y, Xu B (2009) Toxicity bioassay of 11 common acaricides to carmine spider mite, Tetranychus cinnabarinus. Chin Agric Sci Bull 25:386–388

    Google Scholar 

  • Wink M (1992) The role of qionolizidine alkaloids in plant-insect interactions. In: Bernays E (ed) Insect–plant interactions. CRC Press, Boca Raton, pp 133–169

    Google Scholar 

  • Wink M, Schmeller T, Latz-Brūning B (1998) Modes of action of alleochemical alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J Chem Ecol 24:1881–1937

    Article  CAS  Google Scholar 

  • Yang XB, Zhang YM, Hua L, Peng LN, Munyaneza JE, Trumble JT, Liu TX (2010) Repellency of selected biorational insecticides to potato psyllid, Bactericera cockerelli (Hemiptera: Psyllidae). Crop Prot 29:1320–1324

    Article  Google Scholar 

  • Yuan J, Lu LZ, Cong B, Zhang ZJ, Wang FY (2004) Biological activity of alkaloids from Sophora flavescens Ait to pests. Pesticides-Shenyang 43:284–286

    CAS  Google Scholar 

  • Zeng ZP, Jiang JG (2010) Analysis of the adverse reactions induced by natural product-derived drugs. Brit J Pharmacol 159:1374–1391

    Article  CAS  Google Scholar 

  • Zhang ZQ (2003) Mites of greenhouses: identification, biology and control. CAB International, Wallingford

    Book  Google Scholar 

  • Zheng YQ, Yao JR, Shao XD (2000) Review of the constituents and agricultural application of Sophora flavescens Ait. Pestic Sci Admin 21:24–26

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the grant TR31043 from the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Marčić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marčić, D., Međo, I. Acaricidal activity and sublethal effects of an oxymatrine-based biopesticide on two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 64, 375–391 (2014). https://doi.org/10.1007/s10493-014-9831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9831-x

Keywords

Navigation