Experimental and Applied Acarology

, Volume 64, Issue 3, pp 321–335 | Cite as

Geometric morphometric study of geographic and host-related variability in Aceria spp. (Acari: Eriophyoidea) inhabiting Cirsium spp. (Asteraceae)

  • Biljana Vidović
  • Vida Jojić
  • Ivana Marić
  • Slavica Marinković
  • Richard Hansen
  • Radmila Petanović


The russet mite, Aceria anthocoptes (Nalepa), is the only eriophyoid that has been recorded on Cirsium arvense (L.) Scop. It has been noted in several European countries and recently in the USA. In this study we explored the geographic and host-related variability of Aceria spp. inhabiting different Cirsium spp. We applied landmark-based geometric morphometric methods to study morphological variability of three body regions (ventral, coxigenital and prodorsal) of 13 Aceria spp. populations inhabiting five Cirsium spp. in Serbia (Europe) and four Cirsium spp. in Colorado (North America). Analyses of size and shape variation revealed statistically significant differences between Aceria spp. living on European native and North American native Cirsium spp., as well as between A. anthocoptes s.s. inhabiting European C. arvense and North American C. arvense. The coxigenital region was the most informative when considering inter-population shape differences. European Aceria spp. dwelling on Cirsium spp., including A. anthocoptes s.s. from C. arvense, are characterized by higher inter-population size and shape variability than their North American counterparts. This finding supports a Eurasian origin of A. anthocoptes, presumed to consist of a complex of cryptic taxa probably coevolved with host plants in the native environment. Morphological similarity among Aceria spp. inhabiting North American native Cirsium spp. may indicate that speciation of A. anthocoptes started relatively soon after the host shift to plants different from C. arvense in the invaded region.


Eriophyoid mites Cirsium spp. Geometric morphometrics Serbia Colorado Inter-population variability 



This work was partly supported by research grants of the Ministry of Education, Science and Technological Development of Serbia (Grants Nos. III 43001 and 173003).


  1. Baran Ş, Altun A, Ayyildiz N, Kence A (2011) Morphometric analysis of oppiid mites (Acari, Oribatida) collected from Turkey. Exp Appl Acarol 54:411–420PubMedCrossRefGoogle Scholar
  2. Becerra JM, Valdecasas AG (2004) Landmark superimposition for taxonomic identification. Biol J Linn Soc 81:267–274CrossRefGoogle Scholar
  3. Bookstein FL (1991) Morphometric tools for landmarks data. Geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  4. Briese DT, Cullen JM (2001) The use and usefulness of mites in biological control of weeds. In: Halliday RB, Walter DE, Proctor HC, Norton RA, Colloff MJ (eds) Acarology: proceedings of the 10th international congress. CSIRO Publishing, Melbourne, pp 453–463Google Scholar
  5. Clarke FC, Pretorius E (2005) A comparison of geometric morphometric analyses and cross-breeding as methods to determine relatedness in three Amblyomma species (Acari: Ixodidae). Int J Acarol 31:393–405CrossRefGoogle Scholar
  6. Davis R, Flechtmann CHW, Boczek JH, Barke HF (1982) Catalogue of eriophyid mites (Acari: Eriophyoidea). Warsaw Agricultural University Press, WarsawGoogle Scholar
  7. de Lillo E (2001) A modified method for eriophyoid mite extraction (Acari: Eriophyoidea). Int J Acarol 27:67–70CrossRefGoogle Scholar
  8. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New YorkGoogle Scholar
  9. Edgington ES (1995) Randomization tests. Marcel Dekker, New YorkGoogle Scholar
  10. Good P (1994) Permutation test: a practical guide to resampling methods for testing hypotheses. Springer, New YorkCrossRefGoogle Scholar
  11. Hansen R, Ochoa R, Bauchan GR, Amrine J, Lekveishvili M, Wells JD, Michels GJ, Petanović RU, Lydon J (2009) The presence of eriophyoid mite on antive and weed Cirsium species in North America. [abstract]. Weed Science Society of America Meeting Abstracts, 9–12 February 2009, paper no. 160, Orlando, FloridaGoogle Scholar
  12. Holm LG, Plucknett DL, Pancho LV, Herberger JP (1977) Cirsium arvense (L.) Scop. The worlds worst weeds. Distribution and biology. University Press of Hawaii for the East-West food Institute, Honolulu, pp 217–224Google Scholar
  13. Jagersbacher-Baumann J (2014) Species differentiation of scutacarid mites (Heterostigmatina) using multivariate morphometric methods. Exp Appl Acarol 62:279–292PubMedCrossRefGoogle Scholar
  14. Jagersbacher-Baumann J, Ebermann E (2012) Fungal spore transfer and intraspecific variability of a newly described African soil mite (Heterostigmata, Scutacaridae, Heterodispus). Zool Anz 251:101–114CrossRefGoogle Scholar
  15. Keifer HH (1975) Eriophyoidea Nalepa. Injurious Eriophyoid Mites. In: Jeppson LR, Keifer HH, Baker EW (eds) Mites injurious to economic plants. University California Press, Berkeley, pp 327–533Google Scholar
  16. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357PubMedCrossRefGoogle Scholar
  17. Klingenberg CP (2013) Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix Ital J Mammal 24:15–24Google Scholar
  18. Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:1363–1375CrossRefGoogle Scholar
  19. Klingenberg CP, Badyaev AV, Sowry SM, Beckwith NJ (2001) Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. Am Nat 157:11–23PubMedCrossRefGoogle Scholar
  20. Magud BD, Stanisavljević LZ, Petanović RU (2007) Morphological variation in different populations of Aceria anthocoptes (Acari: Eriophyoidea) associated with the Canada thistle, Cirsium arvense, in Serbia. Exp Appl Acarol 42:173–183PubMedCrossRefGoogle Scholar
  21. Moore RJ (1975) The biology of Canadian weeds. 13. Cirsium arvense (L.) Scop. Can J Plant Sci 55:1033–1048CrossRefGoogle Scholar
  22. Nalepa A (1892) Les acaroce´cides de Lorraine (Suite). In: Kieffer JJ (ed) Feuille jeun naturalistes Rev Mens Hist Nat, se´r 3, 22(258):118–129Google Scholar
  23. Navia D, Moraes GJ, Roderick G, Navajas M (2005) The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bull Entomol Res 95:505–516PubMedCrossRefGoogle Scholar
  24. Navia D, Moraes GJ, Querino RB (2006) Geographic variation in the coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae): a geometric morphometric analysis. Int J Acarol 32:301–314CrossRefGoogle Scholar
  25. Ochoa R, Erbe EF, Wergin WP, Frye C, Lydon J (2001) The presence of Aceria anthocoptes (Nalepa) (Acari: Eriophyidae) on Cirsium species in the United States. Int J Acarol 27:179–187CrossRefGoogle Scholar
  26. Petanović R, Boczek J, Stojnić B (1997) Taxonomy and bioecology of eriophyids (Acari: Eriophyoidea) associated with Canada thistle, Cirsium arvense (L.) Scop. Acarologia 38:181–192Google Scholar
  27. Petanović R, Boczek J, Shi A (2000) Four new Aceria species (Acari: Eriophyoidea) from Serbia. Acta Entomol Serb 5:119–129Google Scholar
  28. Pretorius E, Clarke FC (2000) Geometric morphometric analyses of the male and female body shape of Hyalomma truncatum and H. marginatum rufipes (Acari: Ixodidae). Int J Acarol 26:229–238CrossRefGoogle Scholar
  29. Redfern M, Shirley P, Bloxham M (2002) British plant galls. Identification of galls on plants and fungi. Field Stud 10:207–531Google Scholar
  30. Rohlf FJ (1999) Shape statistics: procrustes superimpositions and tangent spaces. J Classif 16:197–223CrossRefGoogle Scholar
  31. Rohlf FJ (2010) TpsDig, ver. 2.16. Ecology and evolution, SUNY at Stony Brook. http://life.bio.sunysb.edu/morph/
  32. Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  33. Skinner K, Smith L, Rice P (2000) Using noxious weed lists to prioritize targets for developing weed managements strategies. Weed Sci 48:640–644CrossRefGoogle Scholar
  34. Smith L, de Lillo E, Amrine JW (2010) Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Exp Appl Acarol 51:115–149PubMedCrossRefGoogle Scholar
  35. StatSoft Inc (1997) Statistica for windows (computer program manual). StatSoft Inc., TulsaGoogle Scholar
  36. Vidović B (2011) Taxonomic characterization of the species of the genus Aceria (Acari: Prostigmata: Eriophyoidea) associated with the plant species of the tribe Cardueae Cass. (Asteraceae). Dissertation, University of BelgradeGoogle Scholar
  37. Vidović B, Lj Stanisavljević, Petanović R (2010) Phenotypic variability in five Aceria spp. (Acari: Prostigmata: Eriophyoidea) inhabiting Cirsium species (Asteraceae) in Serbia. Exp Appl Acarol 62:169–181CrossRefGoogle Scholar
  38. Vidović B, Cvrković T, Petanović R (2012) Phylogenetic relationships of Aceria spp. (Acari, Eriophyoidea) from different Cirsium spp. in Serbia, beased on mitochondrial COI sequences. Abstracts of the 7th symposium of the European Association of Acarologists, 9–13 July 2012, Vienna, Austria, pp 113–114Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Biljana Vidović
    • 1
  • Vida Jojić
    • 2
  • Ivana Marić
    • 3
  • Slavica Marinković
    • 3
  • Richard Hansen
    • 4
  • Radmila Petanović
    • 1
  1. 1.Department of Entomology and Agricultural Zoology, Faculty of AgricultureUniversity of BelgradeBelgrade-ZemunSerbia
  2. 2.Department of Genetic Research, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  3. 3.Institute of Zoology, Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations