Experimental and Applied Acarology

, Volume 64, Issue 1, pp 21–32 | Cite as

Bartonella-like bacteria carried by domestic mite species

Article

Abstract

Bacteria of the genus Bartonella are carried by haematophagous mites, ticks, fleas and flies, and attack the erythrocytes of mammals. Here we describe a Bartonella-like clade, a distinct group related to Bartonellaceae, in stored-product mites (Acari: Astigmata) and a predatory mite Cheyletus eruditus (Acari: Prostigmata) based on the analysis of cloned 16S rRNA gene sequences. By using the clade-specific primers, closely related Bartonella-like 16S rRNA sequences were amplified from both laboratory colonies and field strains of three synanthropic mite species (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and a predatory mite. Altogether, sequences of Bartonella-like bacteria were found in 11 strains, but were not detected in Dermatophagoides farinae and D. pteronyssinus and two strains of L. destructor. All obtained sequences formed a separate cluster branching as a sister group to Bartonellaceae and related to other separate clusters comprising uncultured bacterial clones from human skin and hemipteran insects (Nysius plebeius and Nysius sp.). The classification of sequences into operational taxonomic units (OTUs) showed a difference between A. siro and T. putrescentiae suggesting that the Bartonella-like bacteria are different in these two mite species. However, species specific sequences in separate OTUs were observed also for C. eruditus. Possible symbiotic interactions between Bartonella-like bacteria and their mite hosts are discussed.

Keywords

Bartonella Cheyletus Acarus Dermatophagoides Lepidoglyphus Tyrophagus Symbionts 16S rRNA 

References

  1. Billeter SA, Levy MG, Chomel BB, Breitschwerdt EB (2008) Vector transmission of Bartonella species with emphasis on the potential for tick transmission. Med Vet Entomol 22:1–15PubMedCrossRefGoogle Scholar
  2. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37(Database issue):D141–D145PubMedCentralPubMedCrossRefGoogle Scholar
  3. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  4. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, NISC Comparative Sequencing Program, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192PubMedCentralPubMedCrossRefGoogle Scholar
  5. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  6. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  7. Hubert J, Kopecky J, Perotti MA, Nesvorna M, Braig HR, Sagova-Mareckova M, Macovei L, Zurek L (2012a) Detection and identification of species-specific bacteria associated with synanthropic mites. Microb Ecol 63:919–928PubMedCrossRefGoogle Scholar
  8. Hubert J, Nesvorná M, Ságová-Marečková M, Kopecký J (2012b) Shift of bacterial community in synanthropic mite Tyrophagus putrescentiae induced by Fusarium fungal diet. PLoS One 7:e48429PubMedCentralPubMedCrossRefGoogle Scholar
  9. Jeyaprakash A, Hoy MA, Allsopp MH (2003) Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 84:96–103PubMedCrossRefGoogle Scholar
  10. Kabeya H, Colborn JM, Bai Y, Lerdthusnee K, Richardson JH, Maruyama S, Kosoy MY (2010) Detection of Bartonella tamiae DNA in ectoparasites from rodents in Thailand and their sequence similarity with bacterial cultures from Thai patients. Vector Borne Zoonotic Dis 10:429–434PubMedCrossRefGoogle Scholar
  11. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, NISC Comparative Sequence Program, Murray PR, Turner ML, Segre JA (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859PubMedCentralPubMedCrossRefGoogle Scholar
  12. Kosoy M, Hayman DT, Chan KS (2012) Bartonella bacteria in nature: where does population variability end and a species start? Infect Genet Evol 12:894–904PubMedCrossRefGoogle Scholar
  13. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288PubMedCrossRefGoogle Scholar
  14. Maguiña C, Guerra H, Ventosilla P (2009) Bartonellosis. Clin Dermatol 27:271–280PubMedCrossRefGoogle Scholar
  15. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628PubMedCrossRefGoogle Scholar
  16. Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T (2012) Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 78:4149–4156PubMedCentralPubMedCrossRefGoogle Scholar
  17. Melter O, Arvand M, Votýpka J, Hulínská D (2012) Bartonella quintana transmission from mite to family with high socioeconomic status. Emerg Infect Dis 18:163–165PubMedCentralPubMedCrossRefGoogle Scholar
  18. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829PubMedCentralPubMedCrossRefGoogle Scholar
  19. Reeves WK, Dowling AP, Dasch GA (2006) Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Exp Appl Acarol 38:181–188PubMedCrossRefGoogle Scholar
  20. Reeves WK, Loftis AD, Szumlas DE, Abbassy MM, Helmy IM, Hanafi HA, Dasch GA (2007) Rickettsial pathogens in the tropical rat mite Ornithonyssus bacoti (Acari: Macronyssidae) from Egyptian rats (Rattus spp.). Exp Appl Acarol 41:101–107PubMedCrossRefGoogle Scholar
  21. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA 106:21236–22141PubMedCentralPubMedCrossRefGoogle Scholar
  22. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCentralPubMedCrossRefGoogle Scholar
  23. Smrz J (2003) Microanatomical and biological aspects of bacterial association in Tyrophagus putrescentiae (Acari: Acaridida). Exp Appl Acarol 31:105–113PubMedCrossRefGoogle Scholar
  24. Smrz J (1989) Internal anatomy of Hypochthonius rufulus (Acari: Oribatida). J Morphol 200:215–230CrossRefGoogle Scholar
  25. Smrz J, Catska V (1989) The effect of the consumption of some soil fungi on the internal microanatomy of the mite Tyrophagus putrescentiae (Schrank) (Acari: Acaridida). Acta Univ Carol-Biol 33:81–93Google Scholar
  26. Smrz J, Catska V (2010) Mycopahgous mites and their internal associated bacteria cooperate to digest chitin in the soil. Symbiosis 52:33–40CrossRefGoogle Scholar
  27. Smrz J, Trelova M (1995) The associations of bacteria and some soil mites (Acari: Oribatida and Acaridida). Acta Zool Fenn 196:120–123Google Scholar
  28. Smrz J, Svobodova J, Catska V (1991) Synergetic participation of Tyrophagus putrescentiae (Schrank) (Acari: Acaridida) and its associated bacteria on the destruction of some soil micromycetes. J Appl Entomol 11:206–210CrossRefGoogle Scholar
  29. Sobotnik J, Alberti G, Weyda F, Hubert J (2008) Ultrastructure of the digestive tract in Acarus siro (Acari: Acaridida). J Morphol 269:54–71PubMedCrossRefGoogle Scholar
  30. Stoll S, Gadau J, Gross J, Feldhaar H (2007) Bacterial microbiota associated with ants of the genus Tetraponera. Biol J Linnean Soc 90:399–412CrossRefGoogle Scholar
  31. Tsai YL, Chang CC, Chuang ST, Chomel BB (2011) Bartonella species and their ectoparasites: selective host adaptation or strain selection between the vector and the mammalian host? Comp Immunol Microbiol Infect Dis 34:299–314PubMedCrossRefGoogle Scholar
  32. Valerio CR, Murray P, Arlian LG, Slater JE (2005) Bacterial 16S ribosomal DNA in house dust mite cultures. J Allergy Clin Immunol 116:1296–1300PubMedCrossRefGoogle Scholar
  33. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCentralPubMedCrossRefGoogle Scholar
  34. Zdarkova E (1986) Mass rearing of the predator Cheyletus eruditus (Schrank) (Acarina: Cheyletidae) for biological control of acarid mites infesting stored products. Crop Prot Sci 5:122–124CrossRefGoogle Scholar
  35. Zdarkova E (1998) Biological control of storage mites by Cheyletus eruditus. Integr Pest Manag Rev 3:111–116CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Crop Research InstitutePraha 6-RuzyněCzech Republic

Personalised recommendations