Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Impact of living with kin/non-kin on the life history traits of Tetranychus urticae (Acari: Tetranychidae)

  • 265 Accesses

Abstract

In many vertebrates and invertebrates, living in a group may influence the life history traits, physiology and behaviour of its individual members, whereas genetic relatedness affects social interactions among individuals in a group. The two-spotted spider mite Tetranychus urticae is characterised by a communal organization, in which silk production plays a key role. A silken web protects the colony against biotic and abiotic agents such as predators, competitors, humidity, wind, rain and acaricides. To evaluate the potential costs and benefits of being associated with genetically distant vs genetically close individuals in T. urticae, we assessed various fitness indicators (faecal pellet production, fecundity, death rate) in pure and mixed groups of two distinct populations of T. urticae: a red-form population from Tunisia and a green-form population from Belgium. If genetic origin had no influence, the values of fitness indicators in mixed groups composed of green and red individuals, would be intermediate between those of the pure green-form and red-form groups. Our results show that in a mixed group, faecal pellet production and death rate were statistically similar to the values obtained in the pure group of green-form individuals. Therefore, our study suggests that strain recognition ability may occur in T. urticae and that the genetic background of an individual may have a great impact on several of its life history traits.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aviles L, Tufino P (1998) Colony size and individual fitness in the social spider Anelosimus eximius. Am Nat 152:403–418

  2. Banks SC, Ward SJ, Lindemayer DB, Finlayson GR, Lawson SJ, Taylor AC (2005) The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis. Mol Ecol 14:1789–1801

  3. Bolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family: Brill Academic Pub

  4. Bonato O, Gutierrez J (1999) Effect of mating status on the fecundity and longevity of four spider mite species (Acari: Tetranychidae). Exp Appl Acarol 23:623–632

  5. Carbonnelle S, Hance T, Migeon A, Baret P, Cros-Arteil S, Navajas M (2007) Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari: Tetranychidae) populations along a latitudinal gradient in Europe. Exp Appl Acarol 41:225–241

  6. Chauvin R (1958) L’action du groupement sur la croissance des grillons (Gryllulus domesticus). J Insect Physiol 2:235–248

  7. Clotuche G, Le Goff G, Mailleux A-C, Deneubourg J-L, Detrain C, Hance T (2009) How to visualize the spider mite silk? Microsc Res Tech 72:659–664

  8. Davies L (1998) Delayed egg production and a possible group effect in the blowfly Calliphora vicina. Med Vet Entomol 12:339–344

  9. Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990) Plant strategies of manipulating predatorprey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

  10. Fellowes (1998) Do non-social insects get the (kin) recognition they deserve? Ecol Entomol 23:223–227

  11. Grassé P–P (1946) Sociétés animales et effet de groupe. Experientia 2:77–82

  12. Griesser M, Ekman J (2005) Nepotistic mobbing behaviour in the Siberian jay, Perisoreus infaustus. Anim Behav 69:345–352

  13. Hamilton WD (1964) The genetical evolution of social behaviour. II. J Theor Biol 7:17–52

  14. Hazan A, Gerson U, Tahori AS (1974) Spider mite webbing I. The production of webbing under various environmental conditions. Acarologia 16:68–84

  15. Hinomoto N, Takafuji A (1994) Studies on the population structure of the two-spotted spider mite, Tetranychus urticae Koch, by allozyme variability analysis. Appl Entomol Zool 29:259–266

  16. Holbrook GL, Armstrong E, Bachmann JAS, Bridget MD, Coby S (2000) Role of feeding in the reproductive group effect in females of the German cockroach Blattella germanica (L.). J Insect Physiol 46:941–949

  17. Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC (2004) Differential timing of spider mite induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495

  18. Kant MR, Sabelis MW, Haring MA, Schuurink RC (2008) Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host-plant defences. Proc R Soc Lond B Biol Sci 275:443–452

  19. Ken T, Hepburn HR, Radloff SE, Yusheng Y, Yiqiu L, Danyin Z, Neumann P (2005) Heat-balling wasps by honeybees. Naturwissenschaften 92:492–495

  20. Kirkwood R, Dickie J (2005) Mobbing of a great white shark (Carcharodon carcharias) by adult male australian fur seals (Arctocephalus pusillus doriferus). Mar Mamm Sci 21:336–339

  21. Krams I, Berzins A, Krama T (2009) Group effect in nest defence behaviour of breeding pied flycatchers, Ficedula hypoleuca. Anim Behav 77:513–517

  22. Krause DJ, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

  23. Le Goff GJ (2011) Benefits of aggregation in Tetranychus urticae. PhD thesis. Université Catholique de Louvain, Ottignie-Louvain la Neuve, Belgium

  24. Le Goff G, Mailleux A-C, Detrain C, Deneubourg J-L, Clotuche G, Hance T (2009) Spatial distribution and inbreeding in Tetranychus urticae. C R Biol 332:927–933

  25. Le Goff GJ, Mailleux AC, Detrain C, Deneubourg JL, Clotuche G, Hance T (2010) Group effect on fertility, survival and silk production in the web spinner Tetranychus urticae (Acari: Tetranychidae) during colony foundation. Behaviour 147:1169–1184

  26. Le Goff GJ, Hance T, Detrain C, Deneubourg JL, Clotuche G, Mailleux AC (2011) Impact of starvation on the silk attractiveness in a weaving mite, Tetranychus urticae (Acari: Tetranychidae). J Ethol 30:125–132

  27. Le Goff GJ, Hance T, Detrain C, Deneubourg JL, Mailleux AC (2012) The locomotor activities on sites covered by silk produced by related and unrelated spider mites in Tetranychus urticae (Acari: Tetranychidae). C R Biol 335:226–231

  28. Lihoreau M, Rivault C (2008) Tactile stimuli trigger group effects in cockroach aggregations. Anim Behav 75:1965–1972

  29. Lihoreau M, Brepson L, Rivault C (2009) The weight of the clan: even in insects, social isolation can induce a behavioural syndrome. Behav Process 82:81–84

  30. Macke E, Magalhaes S, Khan HD-T, Luciano A, Frantz A, Facon B, Olivieri I (2011) Sex allocation in haplodiploids is mediated by egg size: evidence in the spider mite Tetranychus urticae Koch. Proc R Soc Lond B Biol Sci 278:1054–1063

  31. Maeda T (2005) Correlation between olfactory responses, dispersal tendencies, and life-history traits of the predatory mite Neoseiulus womersleyi (Acari: Phytoseiidae) of eight local populations. Exp Appl Acarol 37:67–82

  32. Molvar EM, Bowyer RT (1994) Costs and benefits of group living in a recently social ungulate: the Alaskan moose. J Mammal 75:621–630

  33. Mori K, Saito Y (2005) Variation in social behavior within a spider mite genus, Stigmaeopsis (Acari: Tetranychidae). Behav Ecol 16:232

  34. Navajas M, Lagnel J, Gutierrez J, Boursot P (1998) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752

  35. Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

  36. Prokopy RJ, Duan JJ (1998) Socially facilitated egglaying behavior in Mediterranean fruit flies. Behav Ecol Sociobiol 42:117–122

  37. Prokopy RJ, Reynolds AH (1998) Ovipositional enhancement through socially facilitated behavior in Rhagoletis pomonella flies. Entomol Exp Appl 86:281–286

  38. Ranta E, Rita H, Lindström H (1993) Competition versus cooperation: success of individuals foraging alone and in groups. Am Nat 142:42–58

  39. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact test and ecumenecism. J Hered 86:248–249

  40. Roeder C, Harmsen R, Mouldey S (1996) The effects of relatedness on progeny sex ratio in spider mites. J Evol Biol 9:143–151

  41. Rotem KA, Agrawal AA (2003) Density dependent population growth of the two-spotted spider mite, Tetranychus urticae, on the host plant Leonurus cardiaca. Oikos 103:559–565

  42. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for windows and linux. Mol Ecol Resour 8:103–106

  43. Rubenstein DI (1978) On predation, competition, and the advantages of group living. Perspect Ethol 3:205–231

  44. Saito Y (1983) Study on spinning behavior of spider mites.4. The concept of life types in Tetranychinae—an attempt to classify the spinning behavior of Tetranychinae. Acarologia 24:377–391

  45. Saito Y (1986) Prey kills predator: counter-attack success of a spider mite against its specific phytoseiid predator. Exp Appl Acarol 2:47–62

  46. Saito Y (1997) Sociality and kin selection in Acari. In: Choe JC, Crespi BJ (eds) Social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 443–457

  47. Salomon M, Lubin Y (2007) Cooperative breeding increases reproductive success in the social spider Stegodyphus dumicola (Araneae, Eresidae). Behav Ecol Sociobiol 61:1743–1750

  48. Sharov AA (1993) Biology and population dynamics of the common pine sawfly, Diprion pini L, in Russia. Academic Press, San Diego

  49. Solórzano-Filho J (2006) Mobbing of Leopardus wiedii while hunting by a group of Sciurus ingrami in an Araucaria forest of Southeast Brazil. Mammalia 70:156–157

  50. Stow A, Beattie A (2008) Chemical and genetic defenses against disease in insect societies. Brain Behav Immun 22:1009–1013

  51. Tien N, Massourakis G, Sabelis MW, Egas M (2011) Mate choice promotes inbreeding avoidance in the two-spotted spider mite. Exp Appl Acarol 54:119–124

  52. Uesugi R, Osakabe M (2007) Isolation and characterization of microsatellite loci in the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Mol Ecol Notes 7:290–292

  53. Van Impe G (1984) Influence of population density on the duration of immature development in Tetranychus urticae Koch. In: Griftiths DA, Bowman CA (eds) Acarology VI, vol 1. Ellis Horwood, Chichester, pp 617–621

  54. Van Impe G (1985) Contribution à la conception de stratégies de contrôle de l’acarien tisserand commun Tetranychus urticae Koch (Acari Tetranychidae). PhD thesis. Université Catholique de Louvain, Ottignie-Louvain la Neuve, Belgium

  55. Wertheim B, Marchais J, Vet LEM, Dicke M (2002) Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organisms. Ecol Entomol 27:608–617

  56. Wertheim B, van Baalen E-JA, Dicke M, Vet LEM (2005) Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective. Annu Rev Entomol 50:321–346

  57. Wharton DRA, Lola JE, Wharton ML (1967) Population density, survival, growth, and development of the American cockroach. J Insect Physiol 13:699–716

  58. Wiesmann R (1968) Untersuchungen über die Verdauungsvorgänge bei der gemeine Spinmmilbe Tetranychus urticae Koch. Z Fuer Angew Entomol 61:457–465

  59. Wilson EO (1975) Sociobiology. Harvard University Press, Harvard

  60. Yoder JA, Grojean NC (1997) Group influence on water conservation in the giant Madagascar hissing-cockroach, Gromphadorhina portentosa (Dictyoptera: Blaberidae). Physiol Entomol 22:79–82

Download references

Acknowledgments

We are very grateful to Pr. Kaouthar Lebdi who supplied the red form of Tetranychus urticae, which was used in our experiments and to George van Impe for the useful discussions about T. urticae. We would like to thank the whole team of the ‘Laboratoire d’écologie et biogeographie’ for their help in data analysis. GJLG is supported by a grant from the FRIA (Fonds pour la Formation de la Recherche dans Industrie et l’Agriculture). The authors are also indebted to the National Fund for Scientific Research (FNRS, Belgium) for funding through the Fund for Fundamental and Collective Research (FRFC, convention 2.4622.06). ACM is financially supported by IRSIB (Institut d’encouragement de la Recherche Scientifique et de l’Innovation de Bruxelles).

Author information

Correspondence to Guillaume Jean Le Goff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le Goff, G.J., Hance, T., Detrain, C. et al. Impact of living with kin/non-kin on the life history traits of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 63, 37–47 (2014). https://doi.org/10.1007/s10493-014-9783-1

Download citation

Keywords

  • Life history traits
  • Relatedness
  • Group living
  • Two-spotted spider mite
  • Tetranychus urticae