Advertisement

Experimental and Applied Acarology

, Volume 61, Issue 4, pp 387–401 | Cite as

Potential of the predatory mite Phytoseius finitimus (Acari: Phytoseiidae) to feed and reproduce on greenhouse pests

  • Maria L. Pappas
  • Christos Xanthis
  • Konstantinos Samaras
  • Dimitris S. Koveos
  • George D. Broufas
Article

Abstract

Phytoseiid mites of the genus Phytoseius are natural enemies of tetranychid and eriophyid herbivorous mites mostly found on hairy plants where they feed on prey, as well as on pollen. Nevertheless, the nutritional ecology and the role of these predators in biological pest control are only rarely addressed. In the present study, we evaluated the potential of Phytoseius finitimus to feed and reproduce on three major greenhouse pests, the two-spotted spider mite, the greenhouse whitefly and the western flower thrips. Additionally, we estimated the effect of cattail pollen when provided to the predator alone or in mixed diets with prey. Contrary to thrips larvae, both spider mite larvae and whitefly crawlers sustained the development of P. finitimus. In addition, females consumed more spider mite eggs and larvae, as well as whitefly crawlers than thrips larvae, but laid eggs when feeding on all prey. When provided alone, cattail pollen sustained the development and reproduction of the predator. The addition of pollen in mixed diets with prey reduced prey consumption, though it increased the predator’s egg production. We discuss the implications of our findings for biological pest control.

Keywords

Phytoseiidae Spider mites Thrips Whitefly Pollen Alternative food 

Notes

Acknowledgments

Dr. Farid Faraji (MITOX Consultants) is acknowledged for the identification of the phytoseiid species. The detailed and constructive comments of two anonymous reviewers resulted in considerable improvement of our manuscript.

References

  1. Bakker FM, Sabelis MW (1989) How larvae of Thrips tabaci reduce the attack success of phytoseiid predators. Entomol Exp Appl 50(1):47–51CrossRefGoogle Scholar
  2. Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26CrossRefGoogle Scholar
  3. Broufas GD, Koveos DS (2001) Development, survival and reproduction of Euseius finlandicus (Acari: Phytoseiidae) at different constant temperatures. Exp Appl Acarol 25(6):441–460PubMedCrossRefGoogle Scholar
  4. Broufas GD, Pappas ML, Koveos DS (2007) Development, survival, and reproduction of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) at different constant temperatures. Environ Entomol 36(4):657–665PubMedCrossRefGoogle Scholar
  5. Camporese P, Duso C (1996) Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: A case study. Exp Appl Acarol 20(1):1–22Google Scholar
  6. Castagnoli M, Simoni S (1999) Effect of long-term feeding history on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 23(3):217–234CrossRefGoogle Scholar
  7. Cox PD, Matthews L, Jacobson RJ, Cannon R, MacLeod A, Walters KFA (2006) Potential for the use of biological agents for the control of Thrips palmi (Thysanoptera: Thripidae) outbreaks. Biocontrol Sci Tech 16(9):871–891CrossRefGoogle Scholar
  8. De Brujin PJA, Egas M, Janssen A, Sabelis MW (2006) Pheromone-induced priming of a defensive response in western flower thrips. J Chem Ecol 32(7):1599–1603PubMedCrossRefGoogle Scholar
  9. Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp Appl Acarol 23(9):741–763PubMedCrossRefGoogle Scholar
  10. El-Laithy AYM (1998) Laboratory studies on growth parameters of three predatory mites associated with eriophyid mites in olive nurseries. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 105(1):78–83Google Scholar
  11. Faraji F, Çobanoğlu S, Çakmak I (2011) A checklist and a key for the Phytoseiidae species of Turkey with two new species records (Acari: Mesostigmata). Int J Acarol 37(suppl. 1):221–243CrossRefGoogle Scholar
  12. Gorji MK, Fathipour Y, Kamali K (2009) The effect of temperature on the functional response and prey consumption of Phytoseius plumifer (Acari: Phytoseiidae) on the two-spotted spider mite. Acarina 17(2):231–237Google Scholar
  13. Gotoh T, Nozawa M, Yamaguchi K (2004) Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory. Appl Entomol Zool 39(1):97–105CrossRefGoogle Scholar
  14. Helle W, Sabelis MW (1985) Spider mites, their biology, natural enemies and control. World crop pests 1B. Elsevier, AmsterdamGoogle Scholar
  15. Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12(2):197–229PubMedCrossRefGoogle Scholar
  16. Kolokytha PD, Fantinou AA, Papadoulis GT (2011) Effect of several different pollens on the bio-ecological parameters of the predatory mite Typhlodromus athenas Swirski and Ragusa (Acari: Phytoseiidae). Environ Entomol 40(3):597–604PubMedCrossRefGoogle Scholar
  17. Koveos DS, Broufas GD (2000) Functional response of Euseius finlandicus and Amblyseius andersoni to Panonychus ulmi on apple and peach leaves in the laboratory. Exp Appl Acarol 24(4):247–256PubMedCrossRefGoogle Scholar
  18. Kreiter S, Tixier MS, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environ Entomol 31(4):648–660CrossRefGoogle Scholar
  19. Kreiter S, Tixier MS, Bourgeois T (2003) Do generalist phytoseiid mites (Gamasida: Phytoseiidae) have interactions with their host plants? Insect Sci Appl 23(1):35–50Google Scholar
  20. Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23(2):119–131CrossRefGoogle Scholar
  21. Lee HS, Gillespie DR (2011) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53(1):17–27PubMedCrossRefGoogle Scholar
  22. Lorenzon M, Pozzebon A, Duso C (2012) Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni. Exp Appl Acarol 58(3):259–278PubMedCrossRefGoogle Scholar
  23. Mailloux J, Le Bellec F, Kreiter S, Tixier MS, Dubois P (2010) Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Exp Appl Acarol 52(3):275–290PubMedCrossRefGoogle Scholar
  24. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321PubMedCrossRefGoogle Scholar
  25. Messelink GJ, Rv M, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: Two pests are better than one. Biol Control 44(3):372–379CrossRefGoogle Scholar
  26. Messelink GJ, van Maanen R, van Holstein-Saj R, Sabelis MW, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. Biocontrol 55(3):387–398CrossRefGoogle Scholar
  27. Messelink GJ, Bloemhard CMJ, Sabelis MW, Janssen A (2013) Biological control of aphids in the presence of thrips and their enemies. Biocontrol 58(1):45–55CrossRefGoogle Scholar
  28. Momen F, El-Borolossy M (2010) Juvenile survival and development in three phytoseiid species (Acari: Phytoseiidae) feeding on con- and heterospecific immatures. Acta Phytopathol Entomol Hung 45(2):349–357CrossRefGoogle Scholar
  29. Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25(4):271–291PubMedCrossRefGoogle Scholar
  30. Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27(1–2):57–68PubMedCrossRefGoogle Scholar
  31. Nomikou M, Janssen A, Sabelis MW (2003) Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Exp Appl Acarol 31(1–2):15–26PubMedCrossRefGoogle Scholar
  32. Nomikou M, Janssen A, Schraag R, Sabelis MW (2004) Vulnerability of Bemisia tabaci immatures to phytoseiid predators: Consequences for oviposition and influence of alternative food. Entomol Exp Appl 110(2):95–102CrossRefGoogle Scholar
  33. Nomikou M, Sabelis MW, Janssen A (2010) Pollen subsidies promote whitefly control through the numerical response of predatory mites. Biocontrol 55(2):253–260CrossRefGoogle Scholar
  34. Özsisli T, Çobanoğlu S (2011) Mite (Acari) fauna of some cultivated plants from Kahramanmaraş. Turk Afr J Biotechnol 10(11):2149–2155Google Scholar
  35. Papaioannou-Souliotis P, Markoyiannaki-Printziou D, Rumbos I, Adamopoulos I (1999) Phytoseiid mites associated with vine in various provinces of Greece: a contribution to faunistics and biogeography, with reference to eco-ethological aspects of Phytoseius finitimus (Ribaga) (Acari: Phytoseiidae). Acarologia 40(2):112–125Google Scholar
  36. Peverieri GS, Simoni S, Goggioli D, Liguori M, Castagnoli M (2009) Effects of variety and management practices on mite species diversity in Italian vineyards. Bull Insectol 62(1):53–60Google Scholar
  37. Praslička J, Barteková A, Schlarmannová J, Malina R (2009) Predatory mites of the Phytoseiidae family in integrated and ecological pest management systems in orchards in Slovakia. Biologia 64(5):959–961CrossRefGoogle Scholar
  38. Rasmy AH, Elbanhawy EM (1974a) The phytoseiid mite Phytoseius plumifer as a predator of the eriophyid mite Aceria ficus (Acarina). Entomophaga 19(4):427–430CrossRefGoogle Scholar
  39. Rasmy AH, Elbanhawy EM (1974b) Behaviour and bionomics of the predatory mite, Phytoseius plumifer (Acarina: Phytoseiidae) as affected by physical surface features of host plants. Entomophaga 19(3):255–257CrossRefGoogle Scholar
  40. Roda A, Nyrop J, English-Loeb G (2003) Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol 29(3–4):193–211PubMedCrossRefGoogle Scholar
  41. Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116(5):807–817CrossRefGoogle Scholar
  42. Shipp JL, Whitfield GH (1991) Functional-response of the predatory mite, Amblyseius cucumeris (Acari, Phytoseiidae), on western flower thrips, Frankliniella occidentalis (Thysanoptera, Thripidae). Environ Entomol 20(2):694–699Google Scholar
  43. Sokal RR, Rohlf FJ (1995) Biometry: The Principles and Practice of Statistics in Biological Research 3rd edn. Freeman, New YorkGoogle Scholar
  44. Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell, OxfordGoogle Scholar
  45. SPSS (2010) IBM SPSS statistics base 19, copyright SPSS Inc. 1989Google Scholar
  46. Stavrinides MC, Skirvin DJ (2003) The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Bull Entomol Res 93(4):343–350PubMedCrossRefGoogle Scholar
  47. Swirski E, Ragusa S (1976) Notes on predacious mites of Greece, with a description of five new species (Mesostigmata: Phytoseiidae). Phytoparasitica 4(2):101–122CrossRefGoogle Scholar
  48. Swirski E, Ragusa S (1977) Some predacious mites of Greece, with a description of one new species (Mesostigmata: Phytoseiidae). Phytoparasitica 5(2):75–84CrossRefGoogle Scholar
  49. Tixier MS, Kreiter S, Auger P, Weber M (1998) Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): influence of wind and crop environment. Exp Appl Acarol 22(9):523–542CrossRefGoogle Scholar
  50. Tsolakis H, Ragusa E, Ragusa Di Chiara S (2000) Distribution of phytoseiid mites (Parasitiformes, Phytoseiidae) on hazelnut at two different altitudes in Sicily (Italy). Environ Entomol 29(6):1251–1257CrossRefGoogle Scholar
  51. Tuovinen T (1994) Influence of surrounding trees and bushes on the phytoseiid mite fauna on apple orchard trees in Finland. Agric Ecosyst Environ 50(1):39–47CrossRefGoogle Scholar
  52. Van Maanen R, Broufas G, Oveja MF, Sabelis MW, Janssen A (2012) Intraguild predation among plant pests: Western flower thrips larvae feed on whitefly crawlers. Biocontrol 57(4):533–539CrossRefGoogle Scholar
  53. Van Rijn PCJ, Van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83(10):2664–2679CrossRefGoogle Scholar
  54. Vassiliou VA, Kitsis PC, Papadoulis GT (2012) New records of phytoseiid mites (Acari: Phytoseiidae) from Cyprus. Int J Acarol 38(3):191–196CrossRefGoogle Scholar
  55. Walter DE (1992) Leaf surface structure and the distribution of Phytoseius mites (Acarina: Phytoseiidae) in south-eastern Australian forests. Aust J Zool 40(6):593–603CrossRefGoogle Scholar
  56. Walter DE (1996) Living on leaves: mites, tomenta, and leaf domatia. Annu Rev Entomol 41:101–114PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maria L. Pappas
    • 1
  • Christos Xanthis
    • 1
  • Konstantinos Samaras
    • 1
  • Dimitris S. Koveos
    • 2
  • George D. Broufas
    • 1
  1. 1.Laboratory of Agricultural Entomology and Zoology, Department of Agricultural DevelopmentDemocritus University of ThraceOrestiadaGreece
  2. 2.Laboratory of Applied Zoology and Parasitology, Faculty of AgricultureAristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations