Experimental and Applied Acarology

, Volume 61, Issue 2, pp 213–219 | Cite as

Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae: observations using epifluorescence and confocal laser scanning microscopy

  • Andrea Occhipinti
  • Massimo E. MaffeiEmail author


Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.


Tetranychus urticae Epifluorescence microscopy Confocal laser scanning microscopy Chlorophyll Guanine 

Supplementary material

Supplementary movie S1. This movie clip describes the pattern of guanine formation in spider mites. Guanine is formed in the lateral caeca (white circles) and is moved with peristaltic movements towards the central ventriculus. Here guanine accumulates and is merged in big guanine clusters that are stored in the excretory organ. Peristaltic movements inside the excretory organ aggregate more and more guanine pellets (yellow circles). Eventually 4-5 guanine clusters are formed and excreted. (MP4 5543 kb)


  1. Alberti G, Crooker AR (1985) Internal anatomy. In: Helle H, Sabelis MW (eds) Spider mites. Their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 29–62Google Scholar
  2. Alberti G, Coons LB, Fahrenbach WH, Farley RD, Felgenhauer BE, Shear WA (1999) Chelicerate Arthropoda. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New York, pp 877–885Google Scholar
  3. Anderson JF (1966) The excreta of spiders. Compar Biochem Physiol 17:973–982CrossRefGoogle Scholar
  4. Boudreaux HB (1963) Biological aspects of some phytophagous mites. Annu Rev Entomol 8:137–154CrossRefGoogle Scholar
  5. Crooker A (1985) Embryonic and juvenile development. In: Helle H, Sabelis MW (eds) Spider mites. Their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 149–163Google Scholar
  6. Entrekin DL, Oliver JHJ (1982) Aggregation of the chicken mite, Dermanyssus gallinae (acari: Dermanyssidae). J Med Entomol 19:671–678PubMedGoogle Scholar
  7. Evans GO (1992) Excretion and osmoregulation. In: Evans GO (ed) Principles of acarology. CAB International, Cambridge, pp 246–262Google Scholar
  8. Gasser R (1951) Zur Kenntnis der gemeinen Spinnmilbe Tetranychus urticae Koch. Rull Soc Ent Suisse 24:217–262Google Scholar
  9. Helle W, Sabelis MW (1985) Spider mites: their biology, natural enemies and control, vol 1 Part A. Elsevier, AmsterdamGoogle Scholar
  10. Hendry GAF, Houghton JD, Brown SB (1987) Tansley review no-11—the degradation of chlorophyll—a biological enigma. New Phytol 107:255–302CrossRefGoogle Scholar
  11. Insausti TC, Casas J (2008) The functional morphology of color changing in a spider: development of ommochrome pigment granules. J Exp Biol 211:780–789PubMedCrossRefGoogle Scholar
  12. Majdi N, Tackx M, Traunspurger W, Buffan-Dubau E (2012) Feeding of biofilm-dwelling nematodes examined using HPLC-analysis of gut pigment contents. Hydrobiologia 680:219–232CrossRefGoogle Scholar
  13. McEnroe WD (1961) Guanine excretion by the two-spotted spider mite (Tetranychus telarius (L.)). Ann Entomol Soc Am 54:925–926Google Scholar
  14. Nakatani Y, Ourisson G, Beck JP (1981) Chemistry and biochemistry of Chinese drugs. VII. Cytostatic pheophytins from silkworm excreta, and derived photocytotoxic pheophorbides. Chem Pharm Bull 29:2261–2269PubMedCrossRefGoogle Scholar
  15. Prosser CL (1950) Comparative animal physiology. Saunders Co, PhiladelphiaGoogle Scholar
  16. Shao Y et al (2011) Crystallization of alpha- and beta-carotene in the foregut of Spodoptera larvae feeding on a toxic food plant. Insect Biochem Mol Biol 41:273–281PubMedCrossRefGoogle Scholar
  17. Shatrov AB (2010) Comparative morphology, ultrastructure and functions of the excretory organ (postventricular midgut) in the Parasitengona (acariformes). Acarologia 50:93–112CrossRefGoogle Scholar
  18. Van der Geest LP (1985) Aspects of physiology. In: Helle H, Sabelis MW (eds) Spider mites. Their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 171–184Google Scholar
  19. Wiesmann R (1968) Untersuchungen über die Verdauungsvorgänge bei der gemeinen Spinnmilbe, Tetranychus urticae Koch. Z Angew Entomol 61:457–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Life Sciences and Systems BiologyUniversity of Turin, Innovation CentreTurinItaly

Personalised recommendations