Experimental and Applied Acarology

, Volume 61, Issue 1, pp 1–30 | Cite as

Description of a new relict eriophyoid mite, Loboquintus subsquamatusn. gen. & n. sp. (Eriophyoidea, Phytoptidae, Pentasetacini) based on confocal microscopy, SEM, COI barcoding and novel CLSM anatomy of internal genitalia

  • Philipp E. Chetverikov
  • Tatjana Cvrković
  • Biljana Vidović
  • Radmila U. Petanović
Article

Abstract

A new pentasetacine mite Loboquintus subsquamatusn. gen. & n. sp. was found living under scale-like leaves of 2–3 years old twigs of Cupressus sempervirens in Montenegro. This mite species possesses a number of morphological features (uncommon teardrop-shaped body, traits of prosoma, atypical primitive anatomy of the genital apparatus and morphological traits of immatures) which clearly distinguish it from all other known eriophyoids. Adults of L. subsquamatus have seta vi situated on the anterior margin of a uniquely elongate lingua-like thin frontal lobe, three pits on the posterior prodorsal shield margin, a remarkable tube-like structure in the basal part of gnathosoma, a complicated three-layered epigynium, spermathecae directed antero-laterad, short spermathecal tubes and setae eu suppressed in males and possibly expressed in females. External genitalia of males and females of L. subsquamatus are fundamentally similar. Hypothesized remnants of coxisterna III or IV (forming a postgenital plate) are remarkably distinct in males. Two new morphometrical variables are proposed to supplement the CLSM protocol for description of internal genitalia of eriophyoids proposed by Chetverikov et al. (Zootaxa 3560:41–60, 2012b): (a) the length of ventral projection of the transvers genital apodeme and (b) the length of the posterior (=postspermathecal) part of the longitudinal bridge which in L. subsquamatus is remarkably long, whereas in many other eriophyoids it is reduced.

Keywords

CLSM COI Internal genitalia Eriophyoid phylogeny Phytophagy 

References

  1. Alberti G, Coons LB (1999) Acari: mites. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates, vol 8C. Wiley-Liss, New York, pp 515–1215Google Scholar
  2. Amrine JW Jr, Stasny TA, Flechtmann CHW (2003) Revised keys to world genera of eriophyoidea (Acari: Prostigmata). Indira Publishing House, MichiganGoogle Scholar
  3. Bagnjuk IG, Sukhareva SI and Shevchenko VG (1998) Major trends in the evolution of four-legged mites as a specialized group (using families Pentasetacidae Shev., Nalepellidae Roiv. and Phytoptidae Murray (Acari: Tetrapodili) as examples). Acarina 6(1–2):59–76Google Scholar
  4. Boczek J, Shevchenko VG, Davis R (1989) Generic key to world fauna of eriophyoid mites (Acarida: Eriophyoidea). Warsaw Agricultural University Press, WarsawGoogle Scholar
  5. Canestrini G. and Fanzago F. (1876) Nuovi acari Italiani. Atti Societa Veneto-Trentina di Scienze, Lettere ed Atri (Series 5) 4:69–208Google Scholar
  6. Chetverikov PE (2011) Phytoptus atherodes n. sp. (Acari: Eriophyoidea: Phytoptidae) and a supplementary description of Phytoptus hirtae Roivainen 1950 from sedges (Cyperaceae). Zootaxa 3045:26–44Google Scholar
  7. Chetverikov PE (2012a) Preliminary results of CLSM study of internal genitalia of eriophyoid mites (Acari, Eriophyoidea). Abstracts of the 7th symposium of the European Association of Acarologists, 9–13 July 2012, Vienna, Austria, pp 28–29Google Scholar
  8. Chetverikov PE (2012b) Confocal laser scanning microscopy technique for the study of internal genitalia and external morphology of eriophyoid mites (Acari: Eriophyoidea). Zootaxa 3453:56–68Google Scholar
  9. Chetverikov PE, Sukhareva SI (2007) Supplementary descriptions and biological notes on eriophyid mites (Acari: Eriophyidae) of the genus Novophytoptus Roivainen, 1947. Acarina 15(1):261–268Google Scholar
  10. Chetverikov PE, Petanovic R, Sukhareva SI (2009) Systematic remarks on eriophyoid mites from the subfamily Phytoptinae Murray, 1877 (Acari: Eriophyoidea: Phytoptidae). Zootaxa 2070:63–68Google Scholar
  11. Chetverikov P, Cvrković T, Vidović B and Petanović R (2012a) Phylogenetic study of Phytoptidae (Acari, Eriophyoidea) based on mitochondrial COI sequence strongly support the division of the genus Phytoptus into two groups. Abstracts of the 7th symposium of the EUROPEAN Association of Acarologists, 9–13 July 2012, Vienna, Austria, p 80Google Scholar
  12. Chetverikov P, Beaulieu F, Cvrković T, Vidović B, Petanović R (2012b) Oziella sibirica (Eriophyoidea: Phytoptidae), a new eriophyoid mite species described using confocal microscopy and COI barcoding. Zootaxa 3560:41–60Google Scholar
  13. Craemer C (2010) A systematic appraisal of the Eriophyoidea (Acari: Prostigmata). Dissertation, University of PretoriaGoogle Scholar
  14. Dabert J, Ehrnsberger R, Dabert M (2008) Glaucalges tytonis n. sp. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari). Zootaxa 1719:41–52Google Scholar
  15. Dobrivojevic K, Petanovic R (1982) Fundamentals of acarology. Slovo Ljubve Publishing, Belgrade (in Serbian)Google Scholar
  16. Earle CJ (2012) The gymnosperm database. Cupressus sempervirens. http://www.conifers.org/cu/Cupressus_sempervirens.php. Accessed 10 Oct 2012
  17. Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, KewGoogle Scholar
  18. Flechtmann CHW (2004) Eriophyid mites (Acari, Eriophyoidea) from Brazilian sedges (Cyperaceae). Int J Acarol 30:157–164CrossRefGoogle Scholar
  19. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mil Mar Biol Biotech 3:294–299Google Scholar
  20. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663Google Scholar
  21. Keifer HH (1939a) Eriophyid studies IV. Bull Calif Dept Agric 28:233–239Google Scholar
  22. Keifer HH (1939b) Eriophyid studies VI. Bull Calif Dept Agric 28:416–426Google Scholar
  23. Keifer HH (1940) Eriophyid studies X. Bull Calif Dept Agric 29:160–179Google Scholar
  24. Keifer HH (1943) Eriophyid studies XIII. Bull Calif Dept Agric 32:212–222Google Scholar
  25. Keifer HH (1944) Eriophyid studies XIV. Bull Calif Dept Agric 33:18–38Google Scholar
  26. Keifer HH (1959) Eriophyid studies XXVII. Occasional papers, California Department of Agriculture 1, pp 1–18Google Scholar
  27. Keifer HH (1961) Eriophyid studies B-3. Bureau of Entomology, California Department of Agriculture, pp 1–20Google Scholar
  28. Keifer HH (1962) Eriophyid studies B-7. Bureau of Entomology, California Department of Agriculture, pp 1–20Google Scholar
  29. Keifer HH (1965) Eriophyid studies B-13. Bureau of Entomology, California Department of Agriculture, pp 1–20Google Scholar
  30. Keifer HH (1975) Eriophyoidea, chapter 12. In: Jeppson LR, Keifer HH, Baker EW (eds) Mites injurious to economic plants. University of California Press Berkeley, USA, pp 327–396Google Scholar
  31. Keifer HH (1979) Eriophyid studies C-17. Agricultural Research Service, USDA, pp 1–24Google Scholar
  32. Kirpicznikov M and Zabinkova N (1977) Russko-latinsky slovar’ dlya botanikov [Russian-Latin dictionary for botanists].In: J. Borovskij (ed). Nauka Publishing House, LeningradGoogle Scholar
  33. Lindquist EE (1996a) External anatomy and notation of structures. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 3–31CrossRefGoogle Scholar
  34. Lindquist EE (1996b) Phylogenetic relationships. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control World crop pests 6. Elsevier, Amsterdam, pp 301–327CrossRefGoogle Scholar
  35. Lindquist EE (2001) Poisining for a new century: diversification in acarology. Acarology: In: Proceedings of 10th international congress. Halliday RB, Walter DE, Proctor HC, Norton RA and Colloff MJ (eds), CSIRO Publishing, Melburne, pp 17–24Google Scholar
  36. Murray A (1877) Economic entomology, Aptera. South Kensington Museum Science Handbooks, Chapman and HallGoogle Scholar
  37. Nalepa A (1889) Beiträge zur Systematik der Phytopten. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse, Wien, Abtheilung 1, 98(1):112–156Google Scholar
  38. Nuzzaci G, Alberti G (1996) Internal anatomy and physiology. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 101–150CrossRefGoogle Scholar
  39. Oldfield GN, Michalska K (1996) Spermatophore deposition, maiting behaivior and population maiting structure. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 185–198CrossRefGoogle Scholar
  40. Roivainen H (1947) Eriophyid news from Finland. Acta Entomologica Fennica 3:1–51Google Scholar
  41. Roivainen H (1953) Some gall mites (Eriophyidae) from Spain. Publicado en los Archivos del Instituto de Aclimatacion 3:9–43Google Scholar
  42. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019 PubMedCrossRefGoogle Scholar
  43. Schliesske J (1985) Zur Verbrietung und Ökologie einer neunen urssprünglichen Gallmilbenart (Acari: Eriophyoidea) an Araucaria araucana (Molina). Entomologische Mitteilungen zoologische Museum Hamburg 8(124):97–106Google Scholar
  44. Schmidt AR, Janckeb S, Lindquist EE, Ragazzid E, Roghie G, Nascimbenef PC, Schmidt K, Wapplerh T, Grimaldi DA (2012) Arthropods in amber from the Triassic period. Proc Natl Acad Sci USA 109(37):14796–14801PubMedCrossRefGoogle Scholar
  45. Smith IM (1977) A new species of eriophyid mite with eye-like structures, and remarks on the genus Phytoptus (Acari: Prostigmata: Phytoptidae). Can Entomol 109:1097–1102CrossRefGoogle Scholar
  46. Sukhareva SI (1994) Family Phytoptidae Murray 1877 (Acari: Tetrapodili), its consisting, structure and suggested ways of evolution. Acarina 2(1–2):47–72Google Scholar
  47. Ward LK, Hackshaw A, Clarke RT (2003) Do food-plant preferences of modern families of phytophagous insects and mites reflect past evolution with plants? Biol J Linn Soc 78(1):51–83. doi:10.1046/j.1095-8312.2003.00128.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Philipp E. Chetverikov
    • 1
    • 2
  • Tatjana Cvrković
    • 3
  • Biljana Vidović
    • 4
  • Radmila U. Petanović
    • 4
  1. 1.Department of Invertebrate ZoologySaint-Petersburg State UniversitySt. PetersburgRussia
  2. 2.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute for Plant Protection and Environment BelgradeZemunSerbia
  4. 4.Department of Entomology and Agricultural Zoology, Faculty of Agriculture BelgradeUniversity of BelgradeZemunSerbia

Personalised recommendations