Experimental and Applied Acarology

, Volume 60, Issue 3, pp 299–311 | Cite as

Stellate hairs on leaves of a deciduous shrub Viburnum erosum var. punctatum (Adoxaceae) effectively protect Brevipalpus obovatus (Acari: Tenuipalpidae) eggs from the predator Phytoseius nipponicus (Acari: Phytoseiidae)

  • Masaaki Sudo
  • Masahiro Osakabe


The eggs of the herbivorous false spider mite Brevipalpus obovatus Donnadieu have a longer incubation period than those of spider mites and are not protected by webs. Brevipalpus obovatus often lays its eggs in the gaps among the hairs on host leaves. We examined the effects of stellate hairs of Viburnum erosum var. punctatum (VEP) leaves on the survival of B. obovatus eggs. Adult B. obovatus and Phytoseius nipponicus Ehara, a generalist predator, were introduced to VEP leaf disks; each B. obovatus egg was inspected daily until hatching. More eggs (63 vs. 42 %) survived on the abaxial surfaces of VEP leaves, where the stellate hairs are more complicated, than on the adaxial surfaces. Predation hazard decreased rapidly with increasing egg age and a substantial portion of the eggs hatched. Phytoseius nipponicus preyed on eggs regardless of egg age when mixed-age eggs were provided. Manipulative experiments with bent stellate hairs showed that the normal hairs reduced the predation risk of B. obovatus eggs by P. nipponicus. Therefore, the predation hazard was considered to decrease since the stellate hairs hindered the search for B. obovatus eggs by the phytoseiid mite.


False spider mites Predator avoidance Leaf-surface microstructures 



We thank Prof. H. Amano and Dr. S. Yano of Kyoto University for valuable suggestions. This study was partially supported by Grants-in-Aid for Scientific Research (B) Nos. 22380036 to MO from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Grant-in-Aid for JSPS Fellows Nos. 23.2696 to SM from Japan Society for the Promotion of Science (JSPS).

Supplementary material

10493_2012_9648_MOESM1_ESM.docx (111 kb)
Supplementary material 1 (DOCX 110 kb)


  1. Adobe Systems Incorporated (2002) Adobe Photoshop Elements. version 2.0. San Jose, CaliforniaGoogle Scholar
  2. Broström G, Holmberg H (2011) glmmML: Generalized linear models with clustering. version 0.81-8Google Scholar
  3. Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp Appl Acarol 23:741–763PubMedCrossRefGoogle Scholar
  4. Duso C, Malagnini V, Paganelli A, Aldegheri L, Bottini M, Otto S (2004) Pollen availability and phytoseiid abundance (Acari: Phytoseiidae) on natural and secondary hedgerows. Biocontrol 49:397–415CrossRefGoogle Scholar
  5. Ehara S (1962) Notes on some predatory mites (Phytoseiidae and Stigmaeidae). Jpn J Appl Entomol Zool 6:53–60CrossRefGoogle Scholar
  6. Ehara S, Amano H (2009) Phytoseius (Dubininellus) nipponicus Ehara. In: Ehara S, Gotoh T (eds) Colored guide to the plant mites of Japan. Zenkoku Noson Kyoiku Kyokai, Tokyo (in Japanese), pp 96–97Google Scholar
  7. Ehara S, Gotoh T (2009) Brevipalpus obovatus. In Ehara S, Gotoh T (eds.) Colored Guide to the Plant Mites of Japan, p. 152. Zenkoku Noson Kyoiku Kyokai, Tokyo (in Japanese)Google Scholar
  8. Ferreira JAM, Pallini A, Oliveira CL, Sabelis MW, Janssen A (2010) Leaf domatia do not affect population dynamics of the predatory mite Iphiseiodes zuluagai. Basic Appl Ecol 11:144–152. doi: 10.1016/j.baae.2009.10.008 CrossRefGoogle Scholar
  9. Fukaya M, Uesugi R, Ohashi H, Sakai Y, Sudo M, Kasai A, Kishimoto H, Osakabe M (in press) Tolerance to solar ultraviolet-B radiation in the citrus red mite, an upper surface user of host plant leaves. Photochem Photobiol doi:  10.1111/php.12001
  10. Goyal M, Sadana GL, Sharma NK (1985) Influence of temperature on the development of Brevipalpus obovatus (Acarina: Tenuipalpidae). Entomon 10:125–129Google Scholar
  11. Gutschick VP (1999) Biotic and abiotic consequences of differences in leaf structure. New Phytol 143:3–18. doi: 10.1046/j.1469-8137.1999.00423.x CrossRefGoogle Scholar
  12. Jeppson LR (1975) Chapter 2. Population ecology. In: Jeppson LR, Keifer HH, Baker EW (eds) Mites injurious to economic plants, pp. 17–46. University of California Press, Berkeley, CaliforniaGoogle Scholar
  13. Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41:233–258. doi: 10.1007/BF02860838 CrossRefGoogle Scholar
  14. Karban R, English-Loeb G, Walker MA, Thaler J (1995) Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp Appl Acarol 19:189–197CrossRefGoogle Scholar
  15. Kreiter S, Tixier MS, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environ Entomol 31:648–660. doi: 10.1603/0046-225X-31.4.648 CrossRefGoogle Scholar
  16. Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:119–131. doi: 10.1023/A:1006098410165 CrossRefGoogle Scholar
  17. Lill JT, Marquis RJ, Forkner RE, Le Corff J, Holmberg N, Barber NA (2006) Leaf pubescent affects distribution and abundance of generalist slug caterpillars (Lepidoptera: Limacodidae). Environ Entomol 35:797–806. doi: 10.1603/0046-225X-35.3.797 CrossRefGoogle Scholar
  18. Loughner R, Goldman K, Loeb G, Nyrop J (2008) Influence of leaf trichomes on predatory mite (Typhlodromus pyri) abundance in grape varieties. Exp Appl Acarol 45:111–122. doi: 10.1007/s10493-008-9183-5 PubMedCrossRefGoogle Scholar
  19. McMurtry JA, Croft BA (1997) Life styles of phytoseiid mites and their roles as biological control agents. Ann Rev Entomol 42:291–321. doi: 10.1146/annurev.ento.42.1.291 CrossRefGoogle Scholar
  20. O’Dowd DJ, Willson MF (1997) Leaf domatia and the distribution and abundance of foliar mites in broadleaf deciduous forest in Wisconsin. Am Midl Nat 137:337–348CrossRefGoogle Scholar
  21. Ohtsuka K, Osakabe Mh (2009) Deleterious effects of UV-B radiation on herbivorous spider mites: they can avoid it by remaining on lower leaf surfaces. Environ Entomol 38:920–929. doi: 10.1603/022.038.0346 PubMedCrossRefGoogle Scholar
  22. Onzo A, Sabelis MW, Hanna R (2010) Effects of ultraviolet radiation on predatory mites and the role of refuges in plant structures. Environ Entomol 39:695–701PubMedCrossRefGoogle Scholar
  23. Pina T, Argolo PS, Urbaneja A, Jacas JA (2012) Effect of pollen quality on the efficacy of two different life-style predatory mites against Tetranychus urticae in citrus. Biol Control 61:176–183. doi: 10.1016/j.biocontrol.2012.02.003 CrossRefGoogle Scholar
  24. R Development Core Team (2009) R: A language and environment for statistical computing, version 2.10.1. R Foundation for Statistical Computing, ViennaGoogle Scholar
  25. Roda A, Nyrop J, Dicke M, English-Loeb G (2000) Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia 125:428–435. doi: 10.1007/s004420000462 CrossRefGoogle Scholar
  26. Roda A, Nyrop J, English-Loeb G, Dicke M (2001) Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density. Oecologia 129:551–560. doi: 10.1007/s004420100762 Google Scholar
  27. Roda A, Nyrop J, English-loeb G (2003) Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol 29:193–211PubMedCrossRefGoogle Scholar
  28. Saito Y (1985) Life types of spider mites. In: Helle W, Sabelis MW (eds.) Spider Mites. Their Biology, Natural Enemies and Control, Vol. 1A, pp. 253–264. Elsevier, AmsterdamGoogle Scholar
  29. Saito Y (1986) Prey kills predator: counter-attack success of a spider mite against its specific phytoseiid predator. Exp Appl Acarol 2:47–62. doi: 10.1007/BF01193354 CrossRefGoogle Scholar
  30. Sakai Y, Sudo M, Osakabe M (2012) Seasonal changes in the deleterious effects of solar ultraviolet-B radiation on eggs of the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Appl Entomol Zool 47:67–73CrossRefGoogle Scholar
  31. Shah MA (1982) The influence of plant surfaces on the searching behavior of coccinellid larvae. Entomol Exp Appl 31:377–380. doi: 10.1007/BF02996700 CrossRefGoogle Scholar
  32. Sudo M, Osakabe M (2011) Do plant mites commonly prefer the underside of leaves? Exp Appl Acarol 55:25–38. doi: 10.1007/s10493-011-9454-4 PubMedCrossRefGoogle Scholar
  33. Sudo M, Osakabe M (in press) Geotaxis and leaf-surface preferences mitigate negative effects of a predatory mite on an herbivorous mite. Exp Appl Acarol doi:  10.1007/s10493-012-9622-1
  34. Sudo M, Nishida S, Itioka T (2010) Seasonal fluctuations in foliar mite populations on Viburnum erosum Thunb. var. punctatum Franch. et Sav. (Adoxaceae) and sympatric shrubs in temperate secondary forests in western Japan. Appl Entomol Zool 45:405–415. doi: 10.1303/aez.2010.405 CrossRefGoogle Scholar
  35. Tachi F, Osakabe M (2012) Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system. Naturwissenschaften 99:1031–1038. doi: 10.1007/s00114-012-0984-3 PubMedCrossRefGoogle Scholar
  36. Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236:1053–1066. doi: 201210.1007/s00425-012-1651-9 PubMedCrossRefGoogle Scholar
  37. van Haren RJF, Steenhuis MM, Sabelis MW, de Ponti OMB (1987) Tomato stem trichomes and dispersal success of Phytoseiulus persimilis relative to its prey Tetranychus urticae. Exp Appl Acarol 3:115–121. doi: 10.1007/BF01270473 CrossRefGoogle Scholar
  38. van Rijn PCJ, Tanigoshi LK (1999) Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Exp Appl Acarol 23:785–802CrossRefGoogle Scholar
  39. Walter DE (1996) Living on leaves: mites, tomenta, and leaf domatia. Ann Rev Entomol 41:101–114. doi: 10.1146/annurev.en.41.010196.000533 Google Scholar
  40. Walter DE, Proctor HC (1999) Mites: ecology, evolution, and behaviour. CABI Publishing, WallingfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations