Advertisement

Experimental and Applied Acarology

, Volume 59, Issue 1–2, pp 219–244 | Cite as

Changing distributions of ticks: causes and consequences

  • Elsa LégerEmail author
  • Gwenaël Vourc’h
  • Laurence Vial
  • Christine Chevillon
  • Karen D. McCoy
Article

Abstract

Today, we are witnessing changes in the spatial distribution and abundance of many species, including ticks and their associated pathogens. Evidence that these changes are primarily due to climate change, habitat modifications, and the globalisation of human activities are accumulating. Changes in the distribution of ticks and their invasion into new regions can have numerous consequences including modifications in their ecological characteristics and those of endemic species, impacts on the dynamics of local host populations and the emergence of human and livestock disease. Here, we review the principal causes for distributional shifts in tick populations and their consequences in terms of the ecological attributes of the species in question (i.e. phenotypic and genetic responses), pathogen transmission and disease epidemiology. We also describe different methodological approaches currently used to assess and predict such changes and their consequences. We finish with a discussion of new research avenues to develop in order to improve our understanding of these host–vector–pathogen interactions in the context of a changing world.

Keywords

Global change Habitat modification Ixodidae Argasidae Tick-borne disease 

Notes

Acknowledgments

The authors would like to thank two anonymous referees for helpful comments on a previous version of this manuscript, Mrs AM Hello for her corrections and her critical reading of the manuscript, and the members of the group ‘Ticks and tick-borne diseases’ of the REID for useful discussions. KM and CC were supported by the CNRS and the IRD, and GV by the INRA. LV recognises support from the CIRAD, the ECDC (European Centre for Diseases prevention and Control) and the European Union (FP7-KBBE-2007, project ASFRISK). EL was supported by a PhD fellowship from the University of Montpellier 1.

References

  1. Adriaenssens V, Goethals PLM, de Pauw N (2006) Fuzzy knowledge-based models for prediction of Asellus and Gammarus in watercourses in Flanders (Belgium). Ecol Model 195:3–10CrossRefGoogle Scholar
  2. Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17:267–272CrossRefGoogle Scholar
  3. Allan BF, Goessling LS, Storch GA, Thach RE (2010) Blood meal analysis to identify reservoir hosts for Amblyomma americanum ticks. Emerg Infect Dis 16:433–440PubMedCrossRefGoogle Scholar
  4. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  5. Bacon RM, Kugeler KJ, Griffith KS, Mead PS (2008) Surveillance for Lyme disease—United States, 1992–2006. Morb Mortal Wkly Rep 56:1–9Google Scholar
  6. Barré N, Garris GI (1990) Biology and ecology of Amblyomma variegatum (Acari: Ixodidae) in the Caribbean: implications for a regional eradication program. J Agric Entomol 7:1–9Google Scholar
  7. Barré N, Uilenberg G (2010) Spread of parasites transported with their hosts: case study of two species of cattle tick. Rev Sci Tech Off Int Epiz 29:149–160Google Scholar
  8. Barré N, Garris GI, Camus E (1995) Propagation of the tick Amblyomma variegatum in the Caribbean. Rev Sci Tech Off Int Epiz 14:841–855Google Scholar
  9. Barré N, Bianchi M, Chardonnet L (2001) Role of rusa deer Cervus timorensis rusa in the cycle of the cattle tick Boophilus microplus in New Caledonia. Exp Appl Acarol 25:79–96PubMedCrossRefGoogle Scholar
  10. Bennett J (2004) Pests and diseases in the Pacific War: crossing the line. In: Tucker R, Russel E (eds) Natural ally: toward an environment history of warfare. Oregon State University Press, Corvallis, pp 217–251Google Scholar
  11. Beugnet F, Chardonnet L (1995) Tick resistance to pyrethroids in New-Caledonia. Vet Parasitol 56:325–338PubMedCrossRefGoogle Scholar
  12. Beugnet F, Marié JL (2009) Emerging arthropod-borne diseases of companion animals in Europe. Vet Parasitol 163:298–305PubMedCrossRefGoogle Scholar
  13. Biello D (2011) Human population reaches 7 billion—how did this happen and can it go on? Scientific American. http://www.scientificamerican.com/article.cfm?id=human-population-reaches-seven-billion
  14. Blaustein AR, Belden LK, Olson DH, Green DM, Root TL, Kiesecker JM (2001) Amphibian breeding and climate change. Conserv Biol 15:1804–1809CrossRefGoogle Scholar
  15. Bock W, Salski A (1998) A fuzzy knowledge-based model of population dynamics of the yellow-necked mouse (Apodemus flavicollis) in a beach forest. Ecol Model 108:155–161CrossRefGoogle Scholar
  16. Boulinier T, Danchin E (1996) Population trends in kittiwake Rissa tridactyla colonies in relation to tick infestation. Ibis 38:326–334Google Scholar
  17. Boyard C, Barnouin J, Gasqui P, Vourc’h G (2007) Local environmental factors characterizing Ixodes ricinus nymph abundance in grazed permanent pastures for cattle. Parasitology 134:987–994PubMedCrossRefGoogle Scholar
  18. Brownstein JS, Holford TR, Fish D (2005) Effect of climate change on Lyme disease risk in North America. EcoHealth 2:38–46PubMedCrossRefGoogle Scholar
  19. Brun LO, Wilson JT, Daynes P (1983) Ethion resistance in the cattle tick (Boophilus microplus) in New-Caledonia. Trop Pest Manage 29:16–22CrossRefGoogle Scholar
  20. Butler CJ (2003) The disproportionate effect of global warming on the arrival dates of short-distance migratory birds in North America. Ibis 145:484–495CrossRefGoogle Scholar
  21. Carpi G, Cagnacci F, Neteler M, Rizzoli A (2008) Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Epidemiol Infect 136:1416–1424PubMedCrossRefGoogle Scholar
  22. Centre for Food Security and Public Health (CFSPH) (2007) Rhipicephalus (Boophilus) microplus, southern cattle tick, cattle tick. Iowa State University, Ames. http://www.cfsph.iastate.edu/Factsheets/pdfs/boophilus_microplus.pdf. Accessed on 13th Dec 2010
  23. Chevillon C, Ducornez S, de Meeûs T, Koffi BB, Gaia H, Delathiere JM, Barré N (2007) Accumulation of acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) populations from New Caledonia Island. Vet Parasitol 147:276–288PubMedCrossRefGoogle Scholar
  24. Chevillon C, Barré N, Ducronez S, de Garine-Wichatitsky M, de Meeûs T (2012a) Understanding the genetic, demographical and/or ecological processes at play in invasions: lessons from the southern cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp Appl Acarol present volumeGoogle Scholar
  25. Chevillon C, de Meeûs T, McCoy KD (2012b) Population genetics and epidemiology of infectious diseases. In: Morand S, Beaudeau F, Cabaret J (eds) New frontiers of molecular epidemiology of infectious diseases. Springer, Dordrecht, pp 45–76CrossRefGoogle Scholar
  26. Childs J, Shope RE, Fish D, Meslin FX, Peters CJ, Johnson K, Debess E, Dennis D, Jenkins S (1998) Emerging zoonoses. Emerg Infect Dis 4:453–454PubMedCrossRefGoogle Scholar
  27. Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15CrossRefGoogle Scholar
  28. Constantinoiu CC, Jackson LA, Jorgensen WK, Lew-Tabor AE, Piper EK, Mayer DG, Venus B, Jonsson NN (2010) Local immune response against larvae of Rhipicephalus (Boophilus) microplus in Bos taurus indicus and Bos taurus taurus cattle. Int J Parasitol 40:865–875PubMedCrossRefGoogle Scholar
  29. Corn J, Barré N, Thiébot B, Creekmore TE, Garris GI, Nettle VF (1993) A study of the potential role of cattle egrets Bubulcus ibis (Ciconiformes: Ardeidae) in the dissemination of Amblyomma variegatum (Acari: Ixodidae) in the Eastern Caribbean. J Med Entomol 30:1029–1037PubMedGoogle Scholar
  30. Corson MS, Teel PD, Grant WE (2001) Influence of acaricide resistance on cattle-fever tick (Boophilus spp.) infestations in semi-arid thornshrublands: a simulation approach. Exp Appl Acarol 25:171–184PubMedCrossRefGoogle Scholar
  31. Corson MS, Teel PD, Grant WE (2003) Simulating detection of cattle-fever tick (Boophilus spp.) infestations in rotational grazing systems. Ecol Model 167:277–286CrossRefGoogle Scholar
  32. Coulson SJ, Lorentzen E, Strom H, Gabrielsen GW (2009) The parasitic tick Ixodes uriae (Acari: Ixodidae) on seabirds from Spitsbergen, Svalbard. Polar Res 28:399–402CrossRefGoogle Scholar
  33. Cumming GS (1999) Host distributions do not limit the species ranges of most African ticks (Acari: Ixodida). Bull Entomol Res 89:303–327CrossRefGoogle Scholar
  34. Cumming GS (2002) Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83:255–268CrossRefGoogle Scholar
  35. Cumming GS (2007) Global biodiversity scenarios and landscape ecology. Landsc Ecol 22:671–685CrossRefGoogle Scholar
  36. Cumming GS, Van Vuuren DP (2006) Will climate change affect ectoparasite species ranges? Global Ecol Biogeogr 15:486–497Google Scholar
  37. Cutullé C, Jonnson N, Seddon J (2009) Population structure of Australian isolates of the cattle tick Rhipicephalus (Boophilus) microplus. Vet Parasitol 161:283–291PubMedCrossRefGoogle Scholar
  38. Daily GC, Ehrlich PR (1996) Global change and human susceptibility to disease. Annu Rev Energy Env 21:125–144CrossRefGoogle Scholar
  39. Daniel M (1993) Influence of the microclimate on the vertical distribution of the tick Ixodes ricinus (L.) in central Europe. Acarologia 34:105–113Google Scholar
  40. Daniel M, Danielová V, Kriz B, Jirsa A, Nozicka J (2003) Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe. Eur J Clin Microbiol Infect Dis 22:327–328PubMedGoogle Scholar
  41. Danielová V, Rudenko N, Daniel M, Holubová J, Materna J, Golovchenko M, Schwarzová L (2006) Extension of Ixodes ricinus ticks and agents of tick-borne diseases to mountain areas in the Czech Republic. Int J Med Microbiol 296:48–53PubMedCrossRefGoogle Scholar
  42. Danielová V, Schwarzová L, Materna J, Daniel M, Metelka L, Holubová J, Kriz B (2008) Tick-borne encephalitis virus expansion to higher altitudes correlated with climate warming. Int J Med Microbiol 298:68–72CrossRefGoogle Scholar
  43. de Meeûs T, Renaud F (2002) Parasites within the new phylogeny of eukaryotes. Trends Parasitol 18:247–251PubMedCrossRefGoogle Scholar
  44. de Meeûs T, Beati L, Delaye C, Aeschlimann A, Renaud F (2002) Sex-biased genetic structure in the vector of Lyme disease, Ixodes ricinus. Evolution 56:1802–1807PubMedCrossRefGoogle Scholar
  45. de Meeûs T, McCoy KD, Prugnolle F, Chevillon C, Durand P, Hurtrez-Bousses S, Renaud F (2007) Population genetics and molecular epidemiology or how to ‘debusquer la bête’. Infect Genet Evol 7:308–332PubMedCrossRefGoogle Scholar
  46. de Meeûs T, Koffi BB, Barré N, de Garine-Wichatitsky M, Chevillon C (2010) Swift sympatric adaptation of a species of cattle tick to a new deer host in New Caledonia. Infect Genet Evol 10:976–983PubMedCrossRefGoogle Scholar
  47. Diuk-Wasser MA, Vourc’h G, Cislo P, Hoen AG, Melton F, Hamer SA, Rowland M, Cortinas R, Hickling GJ, Tsao JI, Barbour AG, Kitron U, Piesman J, Fish D (2010) Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Global Ecol Biogeogr 19:504–514Google Scholar
  48. Ducornez S, Barré N, Miller RJ, de Garine-Wichatitsky M (2005) Diagnosis of amitraz resistance in Boophilus microplus in New Caledonia with the modified Larval Packet Test. Vet Parasitol 130:285–292PubMedCrossRefGoogle Scholar
  49. Eisen L, Eisen RJ, Lane RS (2002) Seasonal activity patterns of Ixodes pacificus nymphs in relation to climatic conditions. Med Vet Entomol 16:235–244PubMedCrossRefGoogle Scholar
  50. Estrada-Peña A (2001) Climate warming and changes in habitat suitability for Boophilus microplus (Acari: Ixodidae) in Central America. J Parasitol 87:978–987PubMedGoogle Scholar
  51. Estrada-Peña A (2002) Increasing habitat suitability in the United States for the tick that transmits Lyme disease: a remote sensing approach. Environ Health Perspect 110:635–640PubMedCrossRefGoogle Scholar
  52. Estrada-Peña A (2008) Climate, niche, ticks, and models: what they are and how we should interpret them. Parasitol Res 103:S87–S95PubMedCrossRefGoogle Scholar
  53. Estrada-Peña A, Venzal JM (2006) Changes in habitat suitability for the tick Ixodes ricinus (Acari: Ixodidae) in Europe (1900–1999). EcoHealth 3:154–162CrossRefGoogle Scholar
  54. Estrada-Peña A, Martinez JM, Acedo CS, Quilez J, Del Cacho E (2004) Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain). Med Vet Entomol 18:387–397PubMedCrossRefGoogle Scholar
  55. Estrada-Peña A, Sánchez-Acedo C, Quilez J, Del Cacho E (2005) A retrospective study of climatic suitability for the tick Rhipicephalus (Boophilus) microplus in the Americas. Global Ecol Biogeogr 14:565–573CrossRefGoogle Scholar
  56. Estrada-Peña A, Pegram RG, Barre N, Venzal JM (2007a) Using invaded range data to model the climate suitability for Amblyomma variegatum (Acari: Ixodidae) in the New World. Exp Appl Acarol 41:203–214PubMedCrossRefGoogle Scholar
  57. Estrada-Peña A, Zatansever Z, Gargili A, Aktas M, Uzun R, Ergonul O, Jongejan F (2007b) Modeling the spatial distribution of Crimean-Congo hemorrhagic fever outbreaks in Turkey. Vector Borne Zoonotic Dis 7:667–678PubMedCrossRefGoogle Scholar
  58. Estrada-Peña A, Horak IG, Petney T (2008) Climate changes and suitability for the ticks Amblyomma hebraeum and Amblyomma variegatum (Ixodidae) in Zimbabwe (1974–1999). Vet Parasitol 151:256–267PubMedCrossRefGoogle Scholar
  59. Estrada-Peña A, Martínez Avilés M, Muñoz Reoyo MJ (2011) A population model to describe the distribution and seasonal dynamics of the tick Hyalomma marginatum in the Mediterranean Basin. Transbound Emerg Dis 58:213–223PubMedCrossRefGoogle Scholar
  60. Falco RC, Fish D (1991) Horizontal movement of adult Ixodes Dammini (Acari, Ixodidae) attracted to CO2-baited traps. J Med Entomol 28:726–729PubMedGoogle Scholar
  61. Fayer R (2000) Global change and emerging infectious diseases. J Parasitol 86:1174–1181PubMedGoogle Scholar
  62. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  63. Fries BC, Mayer J (2009) Climate change and infectious disease. Interdiscip Perspect Infect Dis 2009. doi: 10.1155/2009/976403
  64. Frisch J (1999) Towards a permanent solution for controlling cattle tick. Int J Parasitol 29:57–71PubMedCrossRefGoogle Scholar
  65. Gern L, Morán-Cadenas F, Burri C (2008) Influence of some climatic factors on Ixodes ricinus ticks studied along altitudinal gradients in two geographic regions in Switzerland. Int J Med Microbiol 298:55–59CrossRefGoogle Scholar
  66. Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI (2010) Climate change and the global malaria recession. Nature 465:342–345PubMedCrossRefGoogle Scholar
  67. Gilbert L (2010) Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia 162:217–225PubMedCrossRefGoogle Scholar
  68. Gilot B, Perez-Eid C (1998) Bioecology of ticks causing the most important pathology in France. Med Mal Infect 28:325–334CrossRefGoogle Scholar
  69. Gilot B, Bonnefille M, Degeilh B, Beaucournu JC, Pichot J, Guiguen C (1994) The development of Ixodes ricinus (Linne, 1758) in French forests—the roe-deer, Capreolus capreolus (L, 1758) used as a biological marker. Parasite 1:81–86PubMedGoogle Scholar
  70. Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull WHO 78:1136–1147PubMedGoogle Scholar
  71. Gómez-Díaz E, Doherty PF, Duneau D, McCoy KD (2010) Cryptic vector divergence masks vector-specific patterns of infection: an example from the marine cycle of Lyme borreliosis. Evol Appl 3:391–401CrossRefGoogle Scholar
  72. Gómez-Díaz E, Boulinier T, Sertour N, Cornet M, Ferquel E, McCoy KD (2011) Genetic structure of marine Borrelia garinii and population admixture with the terrestrial cycle of Lyme borreliosis. Environ Microbiol 13:2453–2467PubMedCrossRefGoogle Scholar
  73. Gray JS (1991) The development and seasonal activity of the tick, Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol 79:323–333Google Scholar
  74. Gray JS (1998) The ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol 22:249–258CrossRefGoogle Scholar
  75. Gray JS (2008) Ixodes ricinus seasonal activity: implications of global warming indicated by revisiting tick and weather data. Int J Med Microbiol 298:19–24CrossRefGoogle Scholar
  76. Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E (2009) Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis 2009. doi: 10.1155/2009/593232
  77. Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109:223–233PubMedCrossRefGoogle Scholar
  78. Guiguen C, Degeilh B (2001) Les tiques d’intérêt médical: Rôle vecteur et diagnose de laboratoire. Revue Française des Laboratoires 338:49–57CrossRefGoogle Scholar
  79. Hamer SA, Tsao JI, Walker ED, Hickling GJ (2010) Invasion of the Lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity. EcoHealth 7:47–63PubMedCrossRefGoogle Scholar
  80. Hancock PA, Brackley R, Palmer SCF (2011) Modelling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations. Int J Parasitol 41:513–522PubMedCrossRefGoogle Scholar
  81. Hanincová K, Kurtenbach K, Diuk-Wasser M, Brei B, Fish D (2006) Epidemic spread of Lyme borreliosis, northeastern United States. Emerg Infect Dis 12:604–611PubMedCrossRefGoogle Scholar
  82. Hernández F, Teel PD, Corson MS, Grant WE (2000) Simulation of rotational grazing to evaluate integrated pest management strategies for Boophilus microplus (Acari: Ixodidae) in Venezuela. Vet Parasitol 92:139–149CrossRefGoogle Scholar
  83. Humphrey PT, Caporale DA, Brisson D (2010) Uncoordinated phylogeography of Borrelia burgdorferi and its tick vector, Ixodes Scapularis. Evolution 64:2653–2663PubMedCrossRefGoogle Scholar
  84. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  85. IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 104Google Scholar
  86. IPCC Technical Paper V (2002) Climate change and biodiversity. In: Gitay H, Suárez A, Watson RT, Dokken DJ (eds) IPCC, Geneva, p 85Google Scholar
  87. Jaenson TGT, Tälleklint L, Lundqvist L, Olsen B, Chirico J, Mejlon H (1994) Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden. J Med Entomol 31:240–256PubMedGoogle Scholar
  88. Jones CJ, Kitron UD (2000) Populations of Ixodes scapularis (Acari: Ixodidae) are modulated by drought at a Lyme disease focus in Illinois. J Med Entomol 37:408–415PubMedCrossRefGoogle Scholar
  89. Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO (1998) Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279:1023–1026PubMedCrossRefGoogle Scholar
  90. Jonsson NN (2006) The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Vet Parasitol 137:1–10PubMedCrossRefGoogle Scholar
  91. Jonsson NN, Cutullé C, Corley SW, Seddon JM (2010) Identification of a mutation in the para-sodium channel gene of the cattle tick Rhipicephalus microplus associated with resistance to flumethrin but not to cypermethrin. Int J Parasitol 40:1659–1664PubMedCrossRefGoogle Scholar
  92. Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygard K, Brun E, Ottesen P, Saevik BK, Ytrehus B (2011) Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit Vectors 4:84PubMedCrossRefGoogle Scholar
  93. Kalluri S, Gilruth P, Rogers D, Szczur M (2007) Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLoS Pathog 3:1361–1371PubMedCrossRefGoogle Scholar
  94. Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498PubMedCrossRefGoogle Scholar
  95. Kempf F, Boulinier T, de Meeûs T, Arnathau C, McCoy KD (2009a) Recent evolution of host-associated divergence in the seabird tick Ixodes uriae. Mol Ecol 18:4450–4462PubMedCrossRefGoogle Scholar
  96. Kempf F, de Meeûs T, Arnathau C, Degeilh B, McCoy KD (2009b) Assortative pairing in Ixodes ricinus (Acari: Ixodidae), the European vector of Lyme Borreliosis. J Med Entomol 46:471–474PubMedCrossRefGoogle Scholar
  97. Kempf F, McCoy KD, de Meeûs T (2010) Wahlund effects and sex-biased dispersal in Ixodes ricinus, the European vector of Lyme borreliosis: new tools for old data. Infect Genet Evol 10:989–997PubMedCrossRefGoogle Scholar
  98. Kempf F, De Meeûs T, Vaumourin E, Noel V, Taragel’ová V, Plantard O, Heylen D, Eyraud C, Chevillon C, McCoy KD (2011) Host races in Ixodes ricinus, the European vector of Lyme borreliosis. Infect Genet Evol 11:2043–2048Google Scholar
  99. Kent RJ (2009) Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9:4–18PubMedCrossRefGoogle Scholar
  100. Klompen JSH, Black WC, Keirans JE, Oliver JH (1996) Evolution of ticks. Annu Rev Entomol 41:141–161PubMedCrossRefGoogle Scholar
  101. Koffi BB, de Meeûs T, Barré N, Durand P, Arnathau C, Chevillon C (2006) Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 15:4603–4611PubMedCrossRefGoogle Scholar
  102. Labruna M, Naranjo A, Thompson C, Estrada-Peña A, Gugliemone A, Jongejan F, de la Fuente J (2009) Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. BMC Evol Biol 9:46PubMedCrossRefGoogle Scholar
  103. Leech DI, Crick HQP (2007) Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis 149:128–145CrossRefGoogle Scholar
  104. Leighton PA, Koffi JK, Pelcat Y, Lindsay LR, Ogden NH (2012) Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J Appl Ecol 49:457–464Google Scholar
  105. Lindgren E (1998) Climate change, tick-borne encephalitis and vaccination needs in Sweden—a prediction model. Ecol Model 110:55–63CrossRefGoogle Scholar
  106. Lindgren E, Gustafson R (2001) Tick-borne encephalitis in Sweden and climate change. Lancet 358:16–18PubMedCrossRefGoogle Scholar
  107. Lindgren E, Jaenson TGT (2006) Lyme Borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. WHO Regional Office for Europe, CopenhagenGoogle Scholar
  108. Lindgren E, Tälleklint L, Polfeldt T (2000) Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect 108:119–123PubMedCrossRefGoogle Scholar
  109. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100:567–571PubMedCrossRefGoogle Scholar
  110. LoGiudice K, Duerr STK, Newhouse MJ, Schmidt KA, Killilea ME, Ostfeld RS (2008) Impact of host community composition on Lyme disease risk. Ecology 89:2841–2849PubMedCrossRefGoogle Scholar
  111. Lukan M, Bullova E, Petko B (2010) Climate warming and tick-borne encephalitis, Slovakia. Emerg Infect Dis 16:524–526PubMedCrossRefGoogle Scholar
  112. Lynch HJ, Fagan WF, Naveen R (2010) Population trends and reproductive success at a frequently visited penguin colony on the western Antarctic Peninsula. Polar Biol 33:493–503CrossRefGoogle Scholar
  113. Madder M, Thys E, Geysen D, Baudoux C, Horak I (2007) Boophilus microplus ticks found in West Africa. Exp Appl Acarol 43:233–234PubMedCrossRefGoogle Scholar
  114. Magalhães S, Forbes MR, Skoracka A, Osakabe M, Chevillon C, McCoy KD (2007) Host race formation in the Acari. Exp Appl Acarol 42:225–238PubMedCrossRefGoogle Scholar
  115. Maillard JC, Maillard N (1998) Historique du peuplement bovin et de l’introduction de la tique Amblyomma variegatum dans les îles françaises des Antilles: synthèse bibliographique. Ethnozootechnie 61:19–36Google Scholar
  116. Mangin S, Gauthier-Clerc M, Frenot Y, Gendner JP, Le Maho Y (2003) Ticks Ixodes uriae and the breeding performance of a colonial seabird king penguin Aptenodytes patagonicus. J Avian Biol 34:30–34CrossRefGoogle Scholar
  117. Matthysen E, Adriaensen F, Dhondt AA (2011) Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Global Change Biol 17:1–16CrossRefGoogle Scholar
  118. McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331CrossRefGoogle Scholar
  119. McCoy KD, Boulinier T, Tirard C, Michalakis Y (2001) Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae. J Evol Biol 14:395–405CrossRefGoogle Scholar
  120. McCoy KD, Boulinier T, Tirard C, Michalakis Y (2003) Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57:288–296PubMedGoogle Scholar
  121. McCoy KD, Chapuis E, Tirard C, Boulinier T, Michalakis Y, Le Bohec C, Le Maho Y, Gauthier-Clerc M (2005) Recurrent evolution of host-specialized races in a globally distributed parasite. Proc R Soc Lond B-Biol Sci 272:2389–2395CrossRefGoogle Scholar
  122. Molia S, Frebling M, Vachieery N, Pinarello V, Petitclerc M, Rousteau A, Martinez D, Lefrancois T (2008) Amblyomma variegatum in cattle in Marie Galante, French Antilles: prevalence, control measures, and infection by Ehrlichia ruminantium. Vet Parasitol 153:338–346PubMedCrossRefGoogle Scholar
  123. Morán-Cadenas F, Rais O, Humair PF, Douet V, Moret J, Gern L (2007) Identification of host bloodmeal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland). J Med Entomol 44:1109–1117PubMedCrossRefGoogle Scholar
  124. Ogden NH, Lindsay LR, Beauchamp G, Charron D, Maarouf A, O’Callaghan CJ, Waltner-Toews D, Barker IK (2004) Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. J Med Entomol 41:622–633PubMedCrossRefGoogle Scholar
  125. Ogden NH, Bigras-Poulin M, O’Callaghan CJ, Barker IK, Lindsay LR, Maarouf A, Smoyer-Tomic KE, Waltner-Toews D, Charron D (2005) A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int J Parasitol 35:375–389PubMedCrossRefGoogle Scholar
  126. Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, O’Callaghan CJ, Ramay F, Waltner-Toews D, Charron DF (2006) Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 36:63–70PubMedCrossRefGoogle Scholar
  127. Ogden NH, Bigras-Poulin M, Hanincová K, Maarouf A, O’Callaghan CJ, Kurtenbach K (2008) Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick Ixodes scapularis. J Theor Biol 254:621–632PubMedCrossRefGoogle Scholar
  128. Olwoch JM, Van Jaarsveld AS, Scholtz CH, Horak IG (2007) Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort J Vet Res 74:45–72PubMedCrossRefGoogle Scholar
  129. Osterkamp J, Wahl U, Schmalfuss G, Haas W (1999) Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. J Comp Physiol A 185:59–67PubMedCrossRefGoogle Scholar
  130. Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: the case of lyme disease. Conserv Biol 14:722–728CrossRefGoogle Scholar
  131. Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F (2006) Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol 4:1058–1068CrossRefGoogle Scholar
  132. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  133. Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928PubMedCrossRefGoogle Scholar
  134. Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405PubMedCrossRefGoogle Scholar
  135. Patz JA, Olson SH, Uejio CK, Gibbs HK (2008) Disease emergence from global climate and land use change. Med Clin North Am 92:1473–1491PubMedCrossRefGoogle Scholar
  136. Pegram RG (2006) End of the Caribbean Amblyomma programme. ICTTD Newsletter 30:4–6Google Scholar
  137. Pegram RG, de Castro JJ, Wilson DD (1997) The CARICOM/FAO/IICA Caribbean Amblyomma programme. Ann NY Acad Sci 849:343–348CrossRefGoogle Scholar
  138. Pichon B, Egan D, Rogers M, Gray J (2003) Detection and identification of pathogens and host DNA in unfed host-seeking Ixodes ricinus L. (Acari: Ixodidae). J Med Entomol 40:723–731PubMedCrossRefGoogle Scholar
  139. Pisanu B, Marsot M, Marmet J, Chapuis JL, Reale D, Vourc’h G (2010) Introduced Siberian chipmunks are more heavily infested by ixodid ticks than are native bank voles in a suburban forest in France. Int J Parasitol 40:1277–1283PubMedCrossRefGoogle Scholar
  140. Polley L (2005) Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin. Int J Parasitol 35:1279–1294PubMedCrossRefGoogle Scholar
  141. Rageau J, Vergent G (1959) Les tiques (Acariens: Ixodidae) des îles françaises du pacifique. Bull Soc Pathol Exot 52:819–835Google Scholar
  142. Randolph SE (1997) Abiotic and biotic determinants of the seasonal dynamics of the tick Rhipicephalus appendiculatus in South Africa. Med Vet Entomol 11:25–37PubMedCrossRefGoogle Scholar
  143. Randolph SE (2004) Evidence that climate change has caused ‘emergence’ of tick-borne diseases in Europe? Int J Med Microbiol 293:5–15PubMedGoogle Scholar
  144. Randolph SE, Rogers DJ (2000) Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc R Soc B-Biol Sci 267:1741–1744CrossRefGoogle Scholar
  145. Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36:741–748PubMedGoogle Scholar
  146. Rizzoli A, Hauffe HC, Tagliapietra V, Neteler M, Rosa R (2009) Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS ONE 4:e4336Google Scholar
  147. Robinson SA, Wasley J, Tobin AK (2003) Living on the edge—plants and global change in continental and maritime Antarctica. Global Change Biol 9:1681–1717CrossRefGoogle Scholar
  148. Rogers DJ, Randolph SE (2006) Climate change and vector-borne diseases. Adv Parasitol 62:345–381PubMedCrossRefGoogle Scholar
  149. Root TL, Liverman D, Newman C (2006) Managing biodiversity in the light of climate change: current biological effects and future impacts. In: Macdonald DW (ed) Key topics in conservation biology. Blackwells, Oxford, pp 85–104Google Scholar
  150. Sanders CJ, Mellor PS, Wilson AJ (2010) Invasive arthropods. Rev Sci Tech Off Int Epiz 29:273–286Google Scholar
  151. Schmidt KA, Ostfeld RS (2001) Biodiversity and the dilution effect in disease ecology. Ecology 82:609–619CrossRefGoogle Scholar
  152. Schulze TL, Jordan RA, Schulze CJ (2005) Host associations of Ixodes scapularis (Acari: Ixodidae) in residential and natural settings in a Lyme disease-endemic area in New Jersey. J Med Entomol 42:966–973PubMedCrossRefGoogle Scholar
  153. Shope R (1991) Global climate change and infectious diseases. Environ Health Perspect 96:171–174PubMedCrossRefGoogle Scholar
  154. Shuman EK (2010) Global climate change and infectious diseases. N Engl J Med 362:1061–1063PubMedCrossRefGoogle Scholar
  155. Sonenshine DE (1993) Biology of ticks, vol 2. Oxford University Press, New YorkGoogle Scholar
  156. Stachurski F (2000) Invasion of West African cattle by the tick Amblyomma variegatum. Med Vet Entomol 14:391–399PubMedCrossRefGoogle Scholar
  157. Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113:1093–1101PubMedGoogle Scholar
  158. Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142PubMedCrossRefGoogle Scholar
  159. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514PubMedCrossRefGoogle Scholar
  160. Subak S (2003) Effects of climate on variability in Lyme disease incidence in the northeastern United States. Am J Epidemiol 157:531–538PubMedCrossRefGoogle Scholar
  161. Šumilo D, Bormane A, Asokliene L, Vasilenko V, Golovljova I, Avsic-Zupanc T, Hubalek Z, Randolph SE (2008) Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev Med Virol 18:81–95PubMedCrossRefGoogle Scholar
  162. Süss J (2008) Tick-borne encephalitis in Europe and beyond—the epidemiological situation as of 2007. Eurosurveill 13:8Google Scholar
  163. Süss J, Klaus C, Gerstengarbe FW, Werner PC (2008) What makes ticks tick? Climate change, ticks, and tick-borne diseases. J Travel Med 15:39–45PubMedCrossRefGoogle Scholar
  164. Sutherst RW (1998) Implications of global change and climate variability for vector-borne diseases: generic approaches to impact assessments. Int J Parasitol 28:935–945PubMedCrossRefGoogle Scholar
  165. Sutherst RW (2001) The vulnerability of animal and human health to parasites under global change. Int J Parasitol 31:933–948PubMedCrossRefGoogle Scholar
  166. Sutherst RW (2003) Prediction of species geographical ranges. J Biogeogr 30:805–816CrossRefGoogle Scholar
  167. Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237CrossRefGoogle Scholar
  168. Sutherst RW, Maywald GF (1985) A computerized system for matching climates in ecology. Agric Ecosyst Environ 13:281–299CrossRefGoogle Scholar
  169. Sutherst RW, Maywald GF, Bourne AS (2007) Including species interactions in risk assessments for global change. Global Change Biol 13:1843–1859CrossRefGoogle Scholar
  170. Swanson SJ, Neitzel D, Reed KD, Belongia EA (2006) Coinfections acquired from Ixodes ticks. Clin Microbiol Rev 19:708–727PubMedCrossRefGoogle Scholar
  171. Tälleklint L, Jaenson TGT (1998) Increasing geographical distribution and density of Ixodes ricinus (Acari: Ixodidae) in central and northern Sweden. J Med Entomol 35:521–526PubMedGoogle Scholar
  172. Theiler G (1962) The Ixodidae parasites of vertebrates in Africa south of the Sahara. Project S 9958. Report to the Director of Veterinary Services, Onderstepoort, pp 154–159Google Scholar
  173. Thomas CJ, Davies G, Dunn CE (2004) Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol 20:216–220PubMedCrossRefGoogle Scholar
  174. Thompson C, Spielman A, Krause PJ (2001) Coinfecting deer-associated zoonoses: Lyme disease, Babesiosis, and Ehrlichiosis. Clin Infect Dis 33:676–685PubMedCrossRefGoogle Scholar
  175. Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biol 12:424–440CrossRefGoogle Scholar
  176. Tompkins DM, Dunn AM, Smith MJ, Telfer S (2011) Wildlife diseases: from individuals to ecosystems. J Anim Ecol 80:19–38PubMedCrossRefGoogle Scholar
  177. Tønnesen MH, Penzhorn BL, Bryson NR, Stoltsz WH, Masibigiri T (2004) Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo Province, South Africa. Exp Appl Acarol 32:199–209PubMedCrossRefGoogle Scholar
  178. Uilenberg G, Camus E (1993) Heartwater (cowdriosis). In: Woldehiwet Z, Ristic M (eds) Rickettsial and chlamydial diseases of domestic ruminants. Pergamon Press, Oxford, pp 293–332Google Scholar
  179. Van Buskirk J, Ostfeld RS (1995) Controlling Lyme-disease by modifying the density and species composition of tick hosts. Ecol Appl 5:1133–1140CrossRefGoogle Scholar
  180. Vassallo M, Paul REL, Perez-Eid C (2000) Temporal distribution of the annual nymphal stock of Ixodes ricinus ticks. Exp Appl Acarol 24:941–949CrossRefGoogle Scholar
  181. Vial L (2009) Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16:191–202PubMedCrossRefGoogle Scholar
  182. Vollmer SA, Bormane A, Dinnis RE, Seellg F, Dobson ADM, Aanensen DM, James MC, Donaghy M, Randolph SE, Fell EJ, Kurtenbach K, Margos G (2010) Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environ Microbiol 13:184–192PubMedCrossRefGoogle Scholar
  183. Vourc’h G, Vial L (2008) Distribution of ticks (and tick-borne diseases) in relation to climate change. Illustration with soft and hard ticks. In: Rowlinson P, Steele M, Nefzaoui A (eds) Livestock and global climate change. Proceeding of the international conference in Hammamet, Tunisia, 17–20, Cambridge University Press, Cambridge, pp 90–95Google Scholar
  184. Walker BH, Steffen WL (1999) The nature of global change. In: Walker BH, Steffen WL, Canadell J, Ingram J (eds) The terrestrial biosphere and global change. Cambridge University Press, Cambridge, pp 1–18Google Scholar
  185. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  186. Wanless S, Barton TR, Harris MP (1997) Blood hematocrit measurements of four species of North Atlantic seabirds in relation to levels of infestation by the tick Ixodes uriae. Colonial Waterbirds 20:540–544CrossRefGoogle Scholar
  187. Weiss LM (2008) Zoonotic parasitic diseases: emerging issues and problems. Int J Parasitol 38:1209–1210PubMedCrossRefGoogle Scholar
  188. Wilcox BA, Gubler DJ (2005) Disease ecology and the global emergence of zoonotic pathogens. Environ Health Prev Med 10:263–272PubMedCrossRefGoogle Scholar
  189. Wilson ML (1998) Distribution and abundance of Ixodes scapularis (Acari: Ixodidae) in North America: ecological processes and spatial analysis. J Med Entomol 35:446–457PubMedGoogle Scholar
  190. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353CrossRefGoogle Scholar
  191. Zeman P, Lynen G (2010) Conditions for stable parapatric coexistence between Boophilus decoloratus and B. microplus ticks: a simulation study using the competitive Lotka-Volterra model. Exp Appl Acarol 52:409–426PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Elsa Léger
    • 1
    Email author
  • Gwenaël Vourc’h
    • 2
  • Laurence Vial
    • 3
  • Christine Chevillon
    • 1
  • Karen D. McCoy
    • 1
  1. 1.MIVEGEC (UMR UM2-UM1-CNRS 5290, UR IRD 224), Centre IRDMontpellier Cedex 5France
  2. 2.INRA (Institut National de la Recherche Agronomique), UR346 Epidémiologie AnimaleSaint Genes ChampanelleFrance
  3. 3.CIRAD, BIOS UMR15 (TA A-15/G), Campus International de BaillarguetMontpellier Cedex 5France

Personalised recommendations