Experimental and Applied Acarology

, Volume 59, Issue 4, pp 483–491 | Cite as

Tick control practices in Burkina Faso and acaricide resistance survey in Rhipicephalus (Boophilus) geigyi (Acari: Ixodidae)

  • Hassane Adakal
  • Frédéric Stachurski
  • Christine Chevillon


Traditional systems account for 95 % of the livestock produced in Burkina Faso. Tick infestation hampers livestock productivity in this area. However, little information exists on tick-control practices used by livestock farmers. We interviewed 60 stockbreeders working in traditional farming systems to obtain the first data on tick-control practices. Sixteen farmers (27 %) did not use conventional practices: seven removed ticks by hand or plastered cattle with dung or engine oil; nine farmers treated cattle with crop pesticides. Forty-four farmers (73 %) used mainly synthetic pyrethroids (SP; either alphacypermethrin or deltamethrin in 20 and 18 farms, respectively) and occasionally amitraz (N = 6). Intervals between treatments varied significantly depending on the chemical used: most farmers using crop pesticides (100 %), amitraz (100 %) or alphacypermethrin (80 %) adjusted tick-control to tick-burden, whereas farmers using deltamethrin tended more to follow a tick-control schedule. Perception of tick-control effectiveness significantly varied among practices: tick-control failures were more frequently reported by farmers using alphacypermethrin (55 %) than by those using either other conventional acaricides (17 %) or crop pesticides (0 %). We investigated whether this could indicate actual development of SP-resistance in cattle ticks. First, using the larval packet test technique, we confirmed that the computation of LC50 and LC90 was repeatable and remained stable across generations of the Rhipicephalus (Boophilus) geigyi Houndé laboratory strain. We then collected from the field fully-engorged female R. geigyi to evaluate the SP-resistance relative to the Houndé reference strain. We did not detect any case of SP-resistance in the field-derived R. geigyi ticks.


Rhiphicephalus (Boophilus) geigyi Alphacypermethrin Deltamethrin Resistance Larval packet test Burkina Faso 



Funding for this work was provided by the French Government through the Fonds de Solidarité Prioritaire (FSP) under contract no 2000-113. We thank the Burkina Faso Veterinary Services for tick collection assistance, Sébastien Zoungrana and Maurice Konkobo for laboratory assistance. Special thanks to Dr. Lesley Bell-Sakyi, Dr. Peter Willadsen and Dr. Maxime Madder for their valuable and useful comments on the manuscript.


  1. Akinboade OA, Dipeolu OO (1981) Detection of Babesia bovis infections in Boophilus geigyi with egg crushings, larval smears, and haemolymph puncture. Vet Q 3(3):143–147PubMedCrossRefGoogle Scholar
  2. Anonymous (2003) Rapport National sur l’état des ressources génétiques animales au Burkina Faso. Ministère des Ressources Animales, OuagadougouGoogle Scholar
  3. Anonymous (2004) Enquête Nationale sur les effectifs du cheptel. Ministère des Ressources Animales et Ministère de l’Economie et du Développement, OuagadougouGoogle Scholar
  4. Farougou S, Kpodekon M, Adakal H, Sagbo P, Boko C (2007) Abondance saisonnière des tiques (Acari : Ixodidae) parasites des ovins dans la région méridionale du Bénin. Rev Méd Vét 158:627–632Google Scholar
  5. Food Agriculture Organization of the United Nations, FAO (2004) Guidelines resistance management and integrated control in ruminants. Animal Production and Health Division, Agriculture Department. FAO, Rome, pp 25–77Google Scholar
  6. Jongejan F, Uilenberg G (1994) Ticks and control methods. Rev Sci Tech Off Int Epizoot 13:1201–1226Google Scholar
  7. Knopf L, Komoin-Oka C, Betschart B, Jongejan F, Gottstein B, Zinsstag J (2002) Seasonal epidemiology of ticks and aspects of cowdriosis in N’Dama village cattle in the Central Guinea savannah of Côte d’Ivoire. Prev Vet Med 53:21–30PubMedCrossRefGoogle Scholar
  8. LeOraSoftware (1987) A user’s guide to probit or logit analysis. LeOra Software, BerkeleyGoogle Scholar
  9. Madder M, Thys E, Geysen D, Baudoux C, Horak I (2007) Boophilus microplus ticks found in West Africa. Exp Appl Acarol 43:233–234PubMedCrossRefGoogle Scholar
  10. Madder M, Thys E, Achi L, Touré A, De Deken R (2011) Rhipicephalus (Boophilus) microplus: a most successful invasive tick species in West Africa. Exp Appl Acarol 53:139–145PubMedCrossRefGoogle Scholar
  11. Madder M, Adehan S, De Deken R, Adehan R, Lokossou R (2012) New foci of Rhipicephalus microplus in West Africa. Exp Appl Acarol 56:385–390PubMedCrossRefGoogle Scholar
  12. Mattioli RC, Janneh L, Corr N, Faye JA, Pandey VS, Verhulst A (1997) Seasonal prevalence of ticks and tick-transmitted haemoparasites in traditionally managed N’Dama cattle with reference to strategic tick control in the Gambia. Med Vet Entomol 11:342–348PubMedCrossRefGoogle Scholar
  13. Moreira C, Schiffers B, Haubruge E (2002) Caractérisation de la résistance au Sénégal d’Helicoverpa armigera HUBNER (Lépidoptère, Noctuidae) par bioessai et méthodes moléculaires. Parasitica 58:89–98Google Scholar
  14. Nianogo AJ, Somda J (1999) Diversification et intégration inter-spécifique dans les élevages ruraux au Burkina Faso. Biotechnol Agron Soc Environ 3:133–139Google Scholar
  15. Pegram RG, Oosterwijk GPM (1990) The effect of Amblyomma variegatum on liveweight gain of cattle in Zambia. Med Vet Entomol 4:327–330PubMedCrossRefGoogle Scholar
  16. Pegram RG, Lemche J, Chizyuka HGB, Sutherst RW, Floyd RB, McCosker PJ (1989) Effect of tick control on liveweight gain of cattle in central Zambia. Med Vet Entomol 3:313–320PubMedCrossRefGoogle Scholar
  17. Plowright (1956) Cutaneous streptothricosis of cattle: I. Introduction and epizootiologivcal features in Nigeria. Vet Rec 68:350–355Google Scholar
  18. Robertson JL, Preisler HK (1992) Pesticides bioassays with arthropods. CRC, Boca Raton 127 ppGoogle Scholar
  19. Stachurski F (2000) Modalités de la rencontre entre la stase adulte de la tique Amblyomma variegatum (Acari, Ixodida) et les bovins: applications potentielles à la lutte contre ce parasite. Université de Montpellier II (Sciences et Techniques du Languedoc), Montpellier, Thèse de Doctorat ès SciencesGoogle Scholar
  20. Stachurski F, Musonge EN, Achukwi MD, Saliki JT (1993) Impact of natural infestation of Amblyomma variegatum on the liveweight gain of male Gudali cattle in Adamawa (Cameroon). Vet Parasitol 49:299–311PubMedCrossRefGoogle Scholar
  21. Stone BF, Haydock KP (1962) A method for measuring the acaricide susceptibility of the cattle tick Boophilus microplus (Can.). Bull Entomol Res 53:563–578CrossRefGoogle Scholar
  22. Sutherst RW, Kerr JD (1987) Losses in livestock productivity caused by ticks and tick-borne diseases. In: Proceedings of an international workshop on the ecology of ticks and epidemiology of tick-borne diseases, pp 108–l12Google Scholar
  23. Walker AR, Bouattour A, Camicas JL, Estrada-Peña A, Horak IG, Latif AA, Pegram RG, Preston PM (2003) Ticks of domestic animals in Africa. A guide to identification of species. Bioscience Reports, ScotlandGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hassane Adakal
    • 1
  • Frédéric Stachurski
    • 2
  • Christine Chevillon
    • 3
  1. 1.URBIOCentre international de recherche-développement sur l’élevage en zone subhumide (CIRDES)Bobo-DioulassoBurkina Faso
  2. 2.UMR15Centre de coopération en recherche agronomique pour le développement (CIRAD)Montpellier Cedex 5France
  3. 3.Maladies Infectieuses & Vecteurs: Ecologie, Génétique, Evolution, Contrôle (MIVEGEC; UMR 5290)CNRS-IRD-Université Montpellier I, Université Montpellier II; UR-224Montpellier Cedex 5France

Personalised recommendations