Experimental and Applied Acarology

, Volume 59, Issue 1–2, pp 203–218 | Cite as

Understanding the genetic, demographical and/or ecological processes at play in invasions: lessons from the southern cattle tick Rhipicephalus microplus (Acari: Ixodidae)

  • Christine Chevillon
  • Michel de Garine-Wichatitsky
  • Nicolas Barré
  • Sophie Ducornez
  • Thierry de Meeûs


The southern cattle tick, Rhipicephalus microplus, is the ixodid species causing the largest economic losses in tropical agrosystems because of its recurrent invasive success, explosive demography on bovine herds, vector competence for diverse pathogens and frequent development of acaricide resistance. Its ecology and the physiological bases of the acaricide resistances it developed, as well as alternative tick control measures, have been intensively studied for decades. By contrast, the tick population genetic structure and its remarkable ability to quickly adapt to new environments have not yet received much attention. We investigated such issues using population genetics analyses in the recently invaded island New Caledonia. In this paper we aim to describe some guidelines for acarologists willing to investigate the processes at play in Acari invasions. Particular emphasis is given to the accuracy of sampling designs and sampling scales for population genetics to be actually informative on the demographical processes of the species (i.e., its mating rules, the determinants of population limits, population sizes, the relationships between genetic exchanges and geographical distances and relevant ecological factors).


Migration Demography Tick control Speciation Adaptation 

Supplementary material

10493_2012_9602_MOESM1_ESM.doc (178 kb)
Supplementary material 1 (DOC 178 kb)


  1. Aguirre DH, Vinabal AE, Salatin AO, Cafrune MM, Volpogni MM, Mangold AJ, Guglielmone AA (2000) Susceptibility to two pyrethroids in Boophilus microplus (Acari: Ixodidae) populations of northwest Argentina. Preliminary results. Vet Parasitol 88:329–334CrossRefPubMedGoogle Scholar
  2. Barrau J, Devambez L (1957) Quelques résultats inattendus de l’acclimatation en Nouvelle-Calédonie. Terre et Vie 4:324–334Google Scholar
  3. Barré N (2003) Boophilus microplus resistance to deltamethrin in New Caledonia. In: V international seminar in animal parasitology. World situation of parasite resistance in veterinary medicine. SENASICA-INIFAP-INFARVET-UADY-FAO-AMPAVE, Merida, Yucatan, Mexico, pp 11–16Google Scholar
  4. Barré N, Uilenberg G (2010) Spread of parasites transported with their hosts: case study of two species of cattle tick. Rev Sci Technol Off Int Epizoot 29:149–160Google Scholar
  5. Barré N, Bianchi M, Chardonnet L (2001) Role of Rusa deer Cervus timorensis russa in the cycle of the cattle tick Boophilus microplus in New Caledonia. Exp Applied Acarol 25:79–96CrossRefGoogle Scholar
  6. Battsetseg B, Lucero S, Xuan X, Claveria FG, Inoue N, Alhassan A, Kanno T, Igarashi I, Nagasawa H, Mikami T, Fujisaki K (2002) Detection of natural infection of Boophilus microplus with Babesia equi and Babesia caballi in Brazilian horses using nested polymerase chain reaction. Vet Parasitol 107:351–357CrossRefPubMedGoogle Scholar
  7. Beugnet F, Chardonnet L (1995) Ticks resistance in pyrethrinoids in New Caledonia. Vet Parasitol 56:325–338CrossRefPubMedGoogle Scholar
  8. Bianchi MW, Barre’ N, Messad S (2003) Factors related to cattle infestion level and resistance to acaricides in Boophilus microplus tick populations in New Caledonia. Vet Parasitol 112:75–89CrossRefPubMedGoogle Scholar
  9. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High-resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457CrossRefPubMedGoogle Scholar
  10. Brun LO, Wilson JT, Daynes P (1983) Ethion resistance in the cattle tick (Boophilus microplus) in New Caledonia. Trop Pest Manag 29:16–22Google Scholar
  11. Centre for Food Security and Public Health (CFSPH) (2007) Rhipicephalus (Boophilus) microplus, southern cattle tick, cattle tick. Iowa State University, Ames, Iowa Accessed on 13th December 2010
  12. Chardonnet P (1988) Etude de faisabilité technique et économique de l’élevage de cerfs en Nouvelle-Calédonie. IEMVT/ADRAF, Nouméa, p 282Google Scholar
  13. Chevillon C, Koffi BB, Barré N, Durand P, Arnathau C, de Meeûs T (2007a) Direct and inferences on parasite mating and gene transmission patterns- pangamy in the cattle tick Rhipicephalus (Boophilus) microplus. Infect Genet Evol 7:298–304CrossRefPubMedGoogle Scholar
  14. Chevillon C, Ducornez S, de Meeûs T, Koffi BB, Gaïa H, Delathière JM, Barré N (2007b) Accumulation of acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) populations from New Caledonian Island. Vet Parasitol 147:276–288CrossRefPubMedGoogle Scholar
  15. Corander J, Wadmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374PubMedGoogle Scholar
  16. Cornuet J, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2004PubMedGoogle Scholar
  17. Corson MS, Teel PD, Grant WE (2003) Simulating detection of cattle fever ticks (Boophilus spp.) infestations in rotational grazing systems. Ecol Model 167:277–286CrossRefGoogle Scholar
  18. Corson MS, Teel PD, Grant WE (2004) Microclimate influence in a physiological model of cattle fever ticks (Boophilus spp.) population dynamics. Ecol Model 180:487–514CrossRefGoogle Scholar
  19. Daynes P, Desoutter D, Domenech J, Lucet P (1984) Résultats de l’enquête sanitaire réalisée en Nouvelle Calédonie. Document du SVPT, pp 663Google Scholar
  20. De Garine-Wichatitsky M, De Meeûs T, Chevillon C, Berthier D, Barré N, Thévenon S, Maillard JC (2009) Population genetic structure of wild and farmed rusa deer (Cervus timorensis russa) in New-Caledonia inferred from polymorphic microsatellite loci. Genetica 137:313–323CrossRefPubMedGoogle Scholar
  21. De Meeûs T, Goudet J (2007) A step-by-step tutorial to use HierFstat to analyse populations hierarchically structured at multiple levels. Infect Genet Evol 7:731–735CrossRefPubMedGoogle Scholar
  22. De Meeûs T, Lehmann L, Balloux F (2006) Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice. Infect Genet Evol 6:163–170CrossRefPubMedGoogle Scholar
  23. De Meeûs T, McCoy K, Prugnolle F, Chevillon C, Durand P, Hurtrez-Boussès S, Renaud F (2007) Population genetics and molecular epidemiology or how to ‘débusquer la bête’. Infect Genet Evol 7:308–332CrossRefPubMedGoogle Scholar
  24. De Meeûs T, Koffi BB, Barré N, de Garine-Wichatitsky M, Chevillon C (2010) Swift sympatric adaptation of a species of cattle tick to a new deer host in New Caledonia. Infect Genet Evol 10:976–983CrossRefPubMedGoogle Scholar
  25. Dieringer D, Schlötterer C (2002) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169Google Scholar
  26. Ducornez S, Barré N, Miller RJ, de Garine-Wichatisky M (2005) Diagnosis of amitraz resitance in Boophilus microplus in New Caledonia with the modified Larval Packet Test. Vet Parasitol 130:285–292CrossRefPubMedGoogle Scholar
  27. Falk-Vairant J, Guerin PM, de Bryne M, Rohrer M (1994) Some observation on mating and fertilization in the cattle tick Boophilus microplus. Med Vet Entomol 8:101–103CrossRefPubMedGoogle Scholar
  28. Frisch J (1999) Towards a permanent solution for controlling cattle tick. Int J Parasit 29:57–71CrossRefGoogle Scholar
  29. George JC, Chastel C (2002) Tick-borne diseases and ecosystem changes in Lorraine. Bull Soc Pathol Exot 95:95–99PubMedGoogle Scholar
  30. Goudet J (1995) FSTat version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  31. Goudet J (2005) HIERFSTAT, a package for R to compute and test hierachical F-statistics. Mol Ecol Notes 5:184–486CrossRefGoogle Scholar
  32. Hartl D, Clarke A (1989) Principles of population genetics theory. Sinauer, SunderlandGoogle Scholar
  33. He H, Chen AC, Davey RB, Ivie GW, George JE (1999) Characterization and molecular cloning of a glutathione S-tranfserase gene from the tick, Boophilus microplus (Acari: Ixodidae). Insect Biochem Mol Biol 29:737–743CrossRefPubMedGoogle Scholar
  34. Hedrick P (2005) Genetics of populations, 3rd edn. Jones and Bartlett Publishers, SudburyGoogle Scholar
  35. Koffi BB, de Meeûs T, Barré N, Durand P, Arnathau C, Chevillon C (2006) Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 15:4603–4611CrossRefPubMedGoogle Scholar
  36. Labruna MB, Kerber CE, Ferreira F, Faccini JL, de Waal DT, Gennari SM (2001) Risk factors to tick infestations and their occurrence on horses in the state of Sao Paulo, Brazil. Vet Parasitol 97:1–14CrossRefPubMedGoogle Scholar
  37. Labruna M, Naranjo A, Thompson C, Estrada-Pena A, Gugliemone A, Jongejan F, de la Fuente J (2009) Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. BMC Evol Biol 9:46CrossRefPubMedGoogle Scholar
  38. Madder M, Thys E, Geysen D, Baudoux C, Horak I (2007) Rhipicephalus (Boophilus) microplus ticks found in West Africa. Exp Appl Acarol 43:233–234CrossRefPubMedGoogle Scholar
  39. Miller RJ, Davey RB, George JE (1999) Characterization of pyrethroid resistance and susceptibility to Coumaphos in Mexican Boophilus microplus (Acari: Ixodidae). J Med Entomol 36:533–538PubMedGoogle Scholar
  40. Morel PC (2000) Maladies à tiques du bétail en Enrique. In: Chertier C, Tigard J, Morel PC, Truancy PM (eds) Précis de pathologies vétérinaires tropicales, Tec & Doc et ed. Universités francophones. Médicales Internationales, London, 774 ppGoogle Scholar
  41. Osterkamp J, Wahl U, Schmalfuss G, Haas W (1999) Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. J Comp Physiol A Sens Neural Behav Physiol 185:59–67CrossRefGoogle Scholar
  42. Owen IL (1977) Rusa deer (Cervus timorensis) as a host for cattle tick (Boophilus microplus) in Papua-New-Guinea. J Wildl Dis 13:208–217PubMedGoogle Scholar
  43. Rageau J, Vergent G (1959) Les tiques (Acariens: Ixodidae) des îles Françaises du Pacifique. Bull Soc Pathol Exot 52:819–835Google Scholar
  44. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for excat tests and oecumenism. J Hered 86:248–249Google Scholar
  45. Rousset F (1997) Geographic structure and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  46. Rousset F (2004) Genetic structure and selection in subdivided populations. Princeton University Press, PrincetonGoogle Scholar
  47. Spaggiari J, De Garine-Wichatitsky M (2006) Home range and habitat use of introduced rusa deer (Cervus timorensis russa) in a mosaic of savannah and native sclerophyll forest of New Caledonia. NZ J Zool 33:175–183CrossRefGoogle Scholar
  48. Uilenverg G (1976) Tick-borne livestock diseases and their vectors. 2. Epizootiology of tick-borne diseases. World Anim Rev FAO 17:8–15Google Scholar
  49. Verges J (1944) Les Tiques du Bétail. Méthodes d’Eradication. Imprimeries réunies, NouméaGoogle Scholar
  50. Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215PubMedGoogle Scholar
  51. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756Google Scholar
  52. Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population genetic structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  53. Wright S (1965) The interpretation of population structure by F-statistics with special regard to system of mating. Evolution 19:395–420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Christine Chevillon
    • 1
  • Michel de Garine-Wichatitsky
    • 2
    • 3
  • Nicolas Barré
    • 2
    • 4
  • Sophie Ducornez
    • 4
  • Thierry de Meeûs
    • 5
    • 6
  1. 1.Maladies Infectieuses and Vecteurs: Ecologie, Génétique, Evolution and Contrôle (MIVEGEC, UMR 5290 CNRS-Universités Montpellier I and II-IRD; UR IRD 224)Montpellier Cedex 5France
  2. 2.CIRAD, UPR AGIRs, TREPMontpellierFrance
  3. 3.Department Biological SciencesUniversity of ZimbabweHarareZimbabwe
  4. 4.Institut Agronomique néo-CalédonienPaïtaNew Caledonia
  5. 5.INTERTRYP, UMR 177 IRD-CIRAD, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES)Bobo-Dioulasso 01Burkina-Faso
  6. 6.CNRS, Délégation Languedoc-RoussillonMontpellier cedex 5France

Personalised recommendations