Experimental and Applied Acarology

, Volume 58, Issue 1, pp 51–68

Crossbreeding between different geographical populations of the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae)

  • M. L. Levin
  • E. Studer
  • L. Killmaster
  • G. Zemtsova
  • K. Y. Mumcuoglu


Brown dog ticks are distributed world-wide, and their systematics and phylogeny are the subject of an ongoing debate. The present study evaluates the reproductive compatibility between Rhipicephalus sanguineus ticks from North America, Israel, and Africa. Female ticks of the parent generation were mated with males from the same and alternate colonies. Every pure and hybrid cohort was maintained separately into the F2 generation with F1 females being allowed to mate only with males from the same cohort. The following survival parameters were measured and recorded for every developmental stage: feeding duration and success; engorgement weight, fertility, and fecundity of females; molting and hatching success. Ticks from North American and Mediterranean populations hybridized successfully. The survival parameters of all their hybrid lines were similar to those in pure lines throughout the F1 generation, and F1 adults were fully fertile. Parent adult ticks from the African population hybridized with either North American or Mediterranean ticks and produced viable progenies whose survival parameters were also similar to those in pure lines throughout the F1 generation. However, F1 adults in the four hybrid lines that included African ancestry were infertile. No parthenogenesis was observed in any pure or hybrid lines as proportion of males in F1 generation ranged from 40 to 60 %. Phylogenetic analysis of the 12S rDNA gene sequences placed African ticks into a separate clade from those of the North American or Mediterranean origins. Our results demonstrate that Rh. sanguineus ticks from North America and Israel represent the same species, whereas the African population used in this study is significantly distant and probably represents a different taxon.


Rhipicephalus sanguineus Hybridization Conspecificity Reproductive incompatibility Mitochondrial DNA Phylogeny 


  1. Anderson JF (2002) The natural history of ticks. Med Clin North Am 86:205–218PubMedCrossRefGoogle Scholar
  2. Baker SC (1998) Distinguishing species and populations of rhipicephaline ticks with ITS 2 ribosomal RNA. J Parasitol 84:887–892CrossRefGoogle Scholar
  3. Balashov YS (1970) Experimental interspecific hybridization between Ornithodoros papillipes ornithodoros-Tartakovskyi and Ornithodoros verrucosus (Argasidae: Ixodoidea)] [Russian]. Parazitologiya 4:274–282Google Scholar
  4. Balashov YS, Grigor’eva LA, Oliver J (1998) Reproductive isolation and interspecific hybridization in ixodid ticks of the Ixodes ricinusI. persulcatus group (Acarina, Ixodidae). Entomol Rev 78:500–508Google Scholar
  5. Beati L, Keirans JE (2001) Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. J Parasitol 87:32–48PubMedGoogle Scholar
  6. Burlini L, Teixeira KRS, Szabó MPJ, Famadas KM (2010) Molecular dissimilarities of Rhipicephalus sanguineus (Acari: Ixodidae) in Brazil and its relation with samples throughout the world: is there a geographical pattern? Exp Appl Acarol 50:361–374PubMedCrossRefGoogle Scholar
  7. Clarke FC, Pretorius E (2005) A comparison of geometric morphometic analyses and cross-breeding as methods to determine relatedness in three Amblyomma species (Acari: Ixodidae). Int J Acarol 31:393–405CrossRefGoogle Scholar
  8. Dantas-Torres F (2008) The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): From taxonomy to control. Vet Parasitol 152:173–185PubMedCrossRefGoogle Scholar
  9. Davey RB, Osburn RL, Castillo C (1983) Longevity and mating behavior in males and parthenogenesis in females in hybridized Boophilus ticks (Acari: Ixodidae). J Med Entomol 20:614–617PubMedGoogle Scholar
  10. Drummond RO, Ernst SE, Trevino JL, Gladney WJ et al (1973) Boophilus annulatus and B. microplus: laboratory tests of insecticides. J Econ Entomol 66:130–133PubMedGoogle Scholar
  11. Farid HA (1996) Morphological keys for the separation of the Rhipicephalus sanguineus group of ticks (Acarina: Ixodidae) in Egypt. J Egypt Soc Parasitol 26:453–460PubMedGoogle Scholar
  12. Feldman-Muhsam B (1952) On the identity of Rhipicephalus sanguineus lat. Bull Res Council Israel 11:187–194Google Scholar
  13. Feldman-Muhsam B (1968) The Rhipicephalus sanguineus complex. WHO/VBC 68(57):113–120Google Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  15. Gladney WJ, Dawkins CC (1973) Experimental interspecific mating of Amblyomma maculatum and A. americanum. Ann Entomol Soc Am 66:1093–1097Google Scholar
  16. Graham OH, Price MA, Trevino JL (1972) Cross-mating experiments with Boophilus annulatus and B. microplus (Acarina: Ixodidae). J Med Entomol 9:531–537PubMedGoogle Scholar
  17. Hafez M, Bishara SI, Bassal TT (1981) Trials on cross-mating between three species of Rhipicephalus sanguineus group (Ixodoidea: Ixodidae). J Egypt Soc Parasitol 11:261–267PubMedGoogle Scholar
  18. Hoogstraal H (1985) Ticks. In: Gaafar SM (ed) Animal population handbook (World Animal Science). Elsevier Sci. Publ. Co., Amsterdam, Netherlands, pp 347–369Google Scholar
  19. Ioffe-Uspenskiy I, Mumcuoglu KY, Uspenskiy I, Galun R (1997) Rhipicephalus sanguineus and Rh. turanicus (Acari:Ixodidae): closely related species with different biological characteristics. J Med Entomol 34:74–81Google Scholar
  20. Ketchum HR, Teel PD, Coates CJ, Strey OF, Longnecker MT (2009) Genetic variation in 12S and 16S mitochondrial rDNA genes of four geographically isolated populations of Gulf Coast ticks (Acari: Ixodidae). J Med Entomol 46:482–489PubMedCrossRefGoogle Scholar
  21. Labruna MB, Naranjo V, Mangold AJ, Thompson C et al (2009) Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. Bmc Evol Biol 9:46Google Scholar
  22. Labruna MB, Soares JF, Martins TF, Soares HS et al (2011) Cross-mating experiments with geographically different populations of Amblyomma cajennense (Acari: Ixodidae). Exp Appl Acarol 54:41–49PubMedCrossRefGoogle Scholar
  23. Leo SS, Pybus MJ, Sperling FAH (2010) Deep mitochondrial DNA lineage divergences within Alberta populations of Dermacentor albipictus (Acari: Ixodidae) do not indicate distinct species. J Med Entomol 47:565–574PubMedCrossRefGoogle Scholar
  24. Matsumoto K, Brouqui P, Raoult D, Parola P (2005) Experimental infection models of ticks of the Rhipicephalus sanguineus group with Rickettsia conorii. Vector Borne Zoonotic Dis 5:363–372PubMedCrossRefGoogle Scholar
  25. Mayr E (1970) Populations, species, and evolution. Belknap Press of Harvard University Press, Cambridge, p 472Google Scholar
  26. Moraes-Filho J, Marcili A, Nieri-Bastos FA, Richtzenhain LJ et al (2011) Genetic analysis of ticks belonging to the Rhipicephalus sanguineus group in Latin America. Acta Trop 117:51–55PubMedCrossRefGoogle Scholar
  27. Mtambo J, Madder M, Van Bortel W, Berkvens D et al (2007) Rhipicephalus appendiculatus and R. zambeziensis (Acari: Ixodidae) from Zambia: a molecular reassessment of their species status and identification. Exp Appl Acarol 41:115–128PubMedCrossRefGoogle Scholar
  28. Müller S, Boulouis HJ, Viallard J, Beugnet F (2004) Epidemiological survey of canine bartonellosis to Bartonella vinsonii subs. berkhoffii and canine monocytic ehrlichiosis in dogs on the Island of Reunion. Revue de Medecine Veterinaire 155:377–380Google Scholar
  29. Oliveira PR, Bechara GH, Denardi SE, Saito KC et al (2005) Comparison of the external morphology of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) ticks from Brazil and Argentina. Vet Parasitol 129:139–147PubMedCrossRefGoogle Scholar
  30. Oliver JH (1989) Biology and systematics of ticks (Acari: Ixodida). Annu Rev Ecol Sys 20:397–430CrossRefGoogle Scholar
  31. Oliver JH, Wilkinson PR, Kohls G (1972) Observations on hybridization of three species of North American Dermacentor ticks. J Parasitol 58:380–384PubMedCrossRefGoogle Scholar
  32. Pegram RG, Clifford CM, Walker JB, Keirans JE (1987a) Clarification of the Rhipicephalus sanguineus group (Acari, Ixodoidea, Ixodidae). I. R. sulcatus Neumann, 1908 and Rh. turanicus Pomerantsev, 1936. Syst Parasitol 10:3–26CrossRefGoogle Scholar
  33. Pegram RG, Keirans JE, Clifford CM, Walker JB (1987b) Clarification of the Rhipicephalus sanguineus group (Acari, Ixodoidea, Ixodidae). II. Rh. sanguineus (Latreille, 1806) and related species. Syst Parasitol 10:27–44CrossRefGoogle Scholar
  34. Pegram RG, Zivkovic D, Jongejan J (1989) Ticks (Acari ixodoidea) of the Yemen Arab Republic II. The Rhipicephalus sanguineus (Latreille) group. Bull Entomol Res 79:259–263CrossRefGoogle Scholar
  35. Pervomaisky GS (1950) Interspecific hybridization of Ixodidae (Russian). Dokl Akad Nauk SSSR 73:1033–1036Google Scholar
  36. Rechav Y, Norval RAI, Oliver JH (1982) Interspecific mating of Amblyomma hebraeum and Ambtyomma variegatum (Acari: Ixodidae). J Med Entomol 19:139–142Google Scholar
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  38. Spickett AM, Malan JR (1978) Genetic incompatibility between Boophilus decoloratus (Koch, 1844) and Boophilus microplus (Canestrini, 1888) and hybrid sterility of Australian and South African Boophilus microplus (Acarina: Ixodidae). Onderstepoort J Vet Res 45:149–153PubMedGoogle Scholar
  39. Szabo MPJ, Mangold AJ, Joao CF, Bechara GH et al (2005) Biological and DNA evidence of two dissimilar populations of the Rhipicephalus sanguineus tick group (Acari: Ixodidae) in South America. Vet Parasitol 130:131–140PubMedCrossRefGoogle Scholar
  40. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035PubMedCrossRefGoogle Scholar
  41. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  42. Troughton DR, Levin ML (2007) Life cycles of seven ixodid tick species (Acari: Ixodidae) under standardized laboratory conditions. J Med Entomol 44:732–740PubMedCrossRefGoogle Scholar
  43. Walker JB, Keirans JE, Horak IG(2000) The genus Rhipicephalus (Acari, Ixoidae). A guide to the brown ticks of the World. Cambridge University Press, Cambridge, UK, 643 ppGoogle Scholar
  44. Zahler M, Gothe R (1997) Evidence for the reproductive isolation of Dermacentor marginatus and Dermacentor reticulatus (Acari: Ixodidae) ticks based on cross-breeding, morphology and molecular studies. Exp Appl Acarol 21:685–696PubMedGoogle Scholar
  45. Zahler M, Gothe R, Rinder H (1995) Diagnostic DNA amplification from individual tick eggs, larvae and nymphs. Exp Appl Acarol 19:731–736PubMedCrossRefGoogle Scholar
  46. Zahler M, Filippova NA, Morel PC, Gothe R et al (1997) Relationships between species of the Rhipicephalus sanguineus group: a molecular approach. J Parasitol 83:302–306PubMedCrossRefGoogle Scholar
  47. Zivkovic D, Pegram RG, Jongejan F, Mwase ET (1986) Biology of Rhipicephalus appendiculatus and R. zambeziensis and production of a fertile hybrid under laboratory conditions. Exp Appl Acarol 2:285–298PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. L. Levin
    • 1
  • E. Studer
    • 1
  • L. Killmaster
    • 1
  • G. Zemtsova
    • 1
  • K. Y. Mumcuoglu
    • 2
  1. 1.Rickettsial Zoonoses Branch, Centers for Disease Control and PreventionAtlantaUSA
  2. 2.Department of Microbiology and Molecular GeneticsThe Kuvin Center for the Study of Infectious and Tropical DiseasesJerusalemIsrael

Personalised recommendations