Experimental and Applied Acarology

, Volume 56, Issue 4, pp 327–344 | Cite as

Temperature-dependent development and reproductive traits of Tetranychus macfarlanei (Acari: Tetranychidae)

  • Mohammad Shaef Ullah
  • Md. Ahsanul Haque
  • Gösta Nachman
  • Tetsuo GotohEmail author


Development and reproductive traits of Tetranychus macfarlanei Baker & Pritchard (Acari: Tetranychidae) were investigated on kidney bean, Phaseolus vulgaris L., at eleven constant temperatures. Tetranychus macfarlanei was able to develop and complete its life cycle at temperatures ranging from 17.5 to 37.5°C. At 15 and 40°C, a few eggs (2–4%) hatched but further development was arrested. Development from egg to adult was slowest at 17.5°C and fastest at 35°C for both females and males. Using Ikemoto and Takai’s linear model, the estimated lower developmental thresholds for egg-to-female adult, egg-to-male adult and egg-to-egg development were 12.9–13.0°C. The thermal constants for the respective stages were 110.85, 115.99 and 125.32 degree-days (DD). The intrinsic optimum temperatures (T Φ) calculated by non-linear SSI model were determined as 24.4, 24.4 and 24.2°C for egg-to-female adult, egg-to-male adult and egg-to-egg development, respectively. The net reproductive rate (R 0) was highest at 25°C (167.4 females per female) and lowest at 17.5°C (42.6 females per female). The intrinsic rate of natural increase, r m, increased linearly with the rising of temperature from 0.102 at 17.5°C to 0.441 day−1 at 35°C. These values suggested that T. macfarlanei could be growing quickly in response to increasing temperatures from 17.5 to 35°C and provide a basis for predicting its potential geographical range.


Tetranychus macfarlanei Development Demographic parameter Degree-day Intrinsic rate of natural increase 



We thank to Dr. Y. Kitashima and Mr. D. Moriya, for their kind help in this research. We also thank Dr. T. Ikemoto for providing his SSI model program and kind suggestions on the draft.


  1. Berger D, Walters R, Gotthard K (2008) What limits insect fecundity? Body-size and temperature-dependent egg maturation and oviposition in a butterfly. Func Ecol 22:523–529CrossRefGoogle Scholar
  2. Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26CrossRefGoogle Scholar
  3. Bolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family (Acari: Tetranychidae). Brill Academic Publishers, Leiden, p 392Google Scholar
  4. Bonato O (1999) The effect of temperature on life history parameters of Tetranychus evansi (Acari: Tetranychidae). Exp Appl Acarol 23:11–19CrossRefGoogle Scholar
  5. Bounfour M, Tanigoshi LK (2001) Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpiniborealis (Acari: Tetranychidae). Ann Entomol Soc Am 94:400–404CrossRefGoogle Scholar
  6. Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438CrossRefGoogle Scholar
  7. Carey JR (2001) Insect biodemography. Annu Rev Entomol 46:79–110PubMedCrossRefGoogle Scholar
  8. Fields PG (1992) The control of stored-products insects and mites with extreme temperatures. J Stored Prod Res 28:89–118CrossRefGoogle Scholar
  9. Gotoh T, Gomi K (2003) Life-history traits of the Kanzawa spider mite Tetranychus kanzawai (Acari: Tetranychidae). Appl Entomol Zool 38:7–14CrossRefGoogle Scholar
  10. Gotoh T, Ishikawa Y, Kitashima Y (2003) Life-history traits of the six Panonychus species from Japan (Acari: Tetranychidae). Exp Appl Acarol 29:241–252PubMedCrossRefGoogle Scholar
  11. Gotoh T, Suwa A, Kitashima Y, Rezk HA (2004) Developmental and reproductive performance of Tetranychus pueraricola Ehara and Gotoh (Acari: Tetranychidae) at four constant temperatures. App Entomol Zool 39:675–682CrossRefGoogle Scholar
  12. Gotoh T, Sugimoto N, Pallini A, Knapp M, Hernandez-Suarez E, Ferragut F, Ho CC, Migeon A, Navajas M, Nachman G (2010) Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures. Exp App Acarol 52:239–259CrossRefGoogle Scholar
  13. Hazan A, Gerson U, Tahori AS (1973) Life history and life tables of the carmine spider mite. Acarologia 3:414–440Google Scholar
  14. Herbert HJ (1981) Biology, life tables, and innate capacity for increase of the two spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae). Can Entomol 113:371–378CrossRefGoogle Scholar
  15. Howell JF, Neven LG (2000) Physiological developmental time and zero development temperature of the codling moth (Lepidoptera: Tortricidae). Environ Entomol 29:766–772CrossRefGoogle Scholar
  16. Huang Z, Ren SX, Musa PD (2008) Effects of temperature on development, survival, longevity, and fecundity of the Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) predator, Axinoscymnus cardilobus (Coleoptera: Coccinellidae). Biol Control 46:209–215CrossRefGoogle Scholar
  17. Huffaker CB, Berryman A, Turchin P (1999) Dynamics and regulation of insect populations. In: Huffaker CB, Gutierrez AP (eds) Ecological entomology, 2nd edn. Wiley, New York, pp 269–305Google Scholar
  18. Ikemoto T (2005) Intrinsic optimum temperature for development of insects and mites. Environ Entomol 34:1377–1387CrossRefGoogle Scholar
  19. Ikemoto T (2008) Tropical malaria does not mean hot environments. J Med Entomol 45:963–969PubMedCrossRefGoogle Scholar
  20. Ikemoto T, Takai K (2000) A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ Entomol 29:671–682CrossRefGoogle Scholar
  21. Jeppson LF, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, USA, p 614Google Scholar
  22. Jervis MA, Boggs CL, Ferns PN (2005) Egg maturation strategy and its associated trade-offs: a synthesis focusing on Lepidoptera. Ecol Entomol 30:359–375CrossRefGoogle Scholar
  23. Jervis MA, Ferns PN, Boggs CL (2007) A trade-off between female life span and larval diet breadth at the interspecific level in Lepidoptera. Evol Ecol 21:307–323CrossRefGoogle Scholar
  24. Jose VT, Shah AH (1989) Carryover of spider mite, Tetranychus macfarlanei through alternate host plants in cotton-growing areas of south and central Gujarat, India. In: Channabasavanna GP, Viraktamath CA (eds) Progress in acarology, vol 2. Oxford and IBH, India, pp 29–31Google Scholar
  25. Liu YH, Tsai JH (1998) Development, survivorship, and reproduction of Tetranychus tumidus banks (Acarina: Tetranychidae) in relation to temperature. Int J Acarol 24:245–252CrossRefGoogle Scholar
  26. Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518CrossRefGoogle Scholar
  27. Manly BFJ (1990) Stage-structured populations: sampling analysis and simulation. Chapman & Hall, London, p 187Google Scholar
  28. Margolies DC, Wrensch DL (1996) Temperature-induced changes in spider mite fitness: offsetting effects of development time, fecundity, and sex ratio. Entomol Exp Appl 78:111–118CrossRefGoogle Scholar
  29. McCullagh P, Nelder JA (1989) Generalized linear models. Monographs on statistics and applied probability 37, 2nd edn. Chapman & Hall, Boca Raton, p 511Google Scholar
  30. Meyer JS, Ingersoll CC, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: Jackknife vs Bootstrap techniques. Ecology 67:1156–1166CrossRefGoogle Scholar
  31. Moutia LA (1958) Contribution to the study of some phytophagous acarina and their predators in Mauritius. Bull Entomol Res 49:59–75CrossRefGoogle Scholar
  32. Nickel JL (1960) Temperature and humidity relationships of Tetranychus desertorum Banks with special reference to distribution. Hilgardia 30:41–101Google Scholar
  33. Noronha ACS (2006) Biological aspects of Tetranychus marianae McGregor (Acari, Tetranychidae) reared on yellow passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) leaves. Rev Bras Zool 23:404–407CrossRefGoogle Scholar
  34. Papaj DR (2000) Ovarian dynamics and host use. Anu Rev Entomol 45:423–448CrossRefGoogle Scholar
  35. Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and development rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ Entomol 31:177–187CrossRefGoogle Scholar
  36. Roy M, Brodeur J, Cloutier C (2003) Effect of temperature on intrinsic rates of natural increase (rm) of a coccinellid and its spider mite prey. BioControl 48:57–72CrossRefGoogle Scholar
  37. Sabelis MW (1985) Reproductive strategy. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 265–278Google Scholar
  38. Sabelis MW (1991) Life-history evolution of spider mites. In: Schuster R, Murphy PW (eds) The acari: reproduction, development and life-history strategies. Chapman & Hall, London, pp 23–49Google Scholar
  39. SAS (2006) SAS Enterprise Guide 4.1. SAS Institute Inc. SAS Campus Drive, Cary, NC, USAGoogle Scholar
  40. Shi P, Ikemoto T, Egami C, Sun Y, Ge F (2011) A modified program for estimating the parameters of the SSI model. Environ Entomol 40:462–469CrossRefGoogle Scholar
  41. Takafuji A, Yokotsuka T, Goka K, Kishimoto H (1996) Ecological performance of the spider mite, Tetranychus okinawanus Ehara (Acari, Tetranychidae), a species newly described from Okinawa island (1). J Acarol Soc Jpn 5:75–81CrossRefGoogle Scholar
  42. Tanigoshi LK, Hoyt SC, Browne RW, Logan JA (1975) Influence of temperature on population increase of Tetranychus mcdanieli (Acarina: Tetranychidae). Ann Entomol Soc Am 86:972–986Google Scholar
  43. Ullah MS, Moriya D, Badii MH, Nachman G, Gotoh T (2011) A comparative study of development and demographic parameters of Tetranychus merganser and Tetranychus kanzawai (Acari: Tetranychidae) at different temperatures. Exp Appl Acarol 53:1–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mohammad Shaef Ullah
    • 1
    • 2
  • Md. Ahsanul Haque
    • 1
    • 3
  • Gösta Nachman
    • 4
  • Tetsuo Gotoh
    • 1
    Email author
  1. 1.Laboratory of Applied Entomology and Zoology, Faculty of AgricultureIbaraki University, AmiIbarakiJapan
  2. 2.Department of Entomology, Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
  3. 3.Department of Entomology, Faculty of AgricultureBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
  4. 4.Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations