Advertisement

Experimental and Applied Acarology

, Volume 56, Issue 4, pp 287–295 | Cite as

Triggering chemical defense in an oribatid mite using artificial stimuli

  • Michael Heethoff
  • Günther Raspotnig
Article

Abstract

Most oribatid mites are well known for their exocrine oil gland secretions, from which more than a hundred different chemical components (hydrocarbons, terpenes, aromatics and alkaloids) have been described. The biological functions of these secretions have remained enigmatic for most species, but alarm-pheromonal and allomonal functions have been hypothesized, and demonstrated in some cases. Here, we tested different experimental stimuli to induce the release of defensive secretions in the model oribatid mite Archegozetes longisetosus Aoki. Whereas various mechanical stimuli did not result in a reproducible and complete expulsion of oil gland secretions, repeated treatments with hexane led to complete discharge. Life history parameters such as survival, development and reproduction were not influenced by the hexane treatment. Repeated hexane treatments also resulted in a complete depletion of oil glands in Euphthiracarus cribrarius Berlese.

Keywords

Chemical ecology Acari Oribatida Archegozetes longisetosus 

Notes

Acknowledgments

MH is funded by the German Science Foundation (DFG-Forschungsstipendium HE4593/3-1). We thank Roy Norton for helpful comments on the manuscript.

References

  1. Alberti G, Heethoff M, Norton RA, Schmelzle S, Seniczak A, Seniczak S (2011) Fine structure of the gnathosoma of Archegozetes longisetosus Aoki (Acari: Oribatida, Trhypochthoniidae). J Morph 272:1025–1079. doi: 10.1002/jmor.10971 PubMedCrossRefGoogle Scholar
  2. Bergmann P, Laumann M, Cloetens P, Heethoff M (2008) Morphology of the internal reproductive organs of Archegozetes longisetosus Aoki (Acari, Oribatida). Soil Org 80:171–195Google Scholar
  3. Blum MS (1996) Semiochemical parsimony in the Arthropoda. Ann Rev Entomol 41:353–374. doi: 10.1146/annurev.en.41.010196.002033 CrossRefGoogle Scholar
  4. Eisner T (2003) For love of insects. Harvard University Press, CambridgeGoogle Scholar
  5. Eisner T, Rossini C, González A, Eisner M (2004) Chemical defense of an opilionid (Acanthopachylus aculeatus). J Exp Biol 207:1313–1321. doi: 10.1242/jeb.00849 PubMedCrossRefGoogle Scholar
  6. Eisner T, Eisner M, Siegler M (2005) Secret weapons. Harvard University Press, CambridgeGoogle Scholar
  7. Heethoff M, Koerner L (2007) Small but powerful—the oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. J Exp Biol 210:3036–3042. doi: 10.1242/jeb.008276 PubMedCrossRefGoogle Scholar
  8. Heethoff M, Raspotnig G (2011) Is 7-hydroxyphthalide a natural compound of oil gland secretions?—evidence from Archegozetes longisetosus (Acari, Oribatida). Acarologia 51:229–236. doi: 10.1051/acarologia/20112004 CrossRefGoogle Scholar
  9. Heethoff M, Raspotnig G (2012) Expanding the ‘enemy-free space’ for oribatid mites: evidence for chemical defense of juvenile Archegozetes longisetosus against the rove beetle Stenus juno. Exp Appl Acarol 56:93–97. doi: 10.1007/s10493-011-9501-1 PubMedCrossRefGoogle Scholar
  10. Heethoff M, Laumann M, Bergmann P (2007) Adding to the reproductive biology of the parthenogenetic oribatid mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). Turk J Zool 31:151–159Google Scholar
  11. Heethoff M, Norton RA, Scheu S, Maraun M (2009) Parthenogenesis in oribatid mites (Acari, Oribatida): evolution without sex. In: Schön I, Martens K, van Dijk P (eds) Lost sex: the evolutionary biology of parthenogenesis. Springer, Dordrecht, pp 241–57. doi: 10.1007/978-90-481-2770-2_12
  12. Heethoff M, Koerner L, Norton RA, Raspotnig G (2011a) Tasty but protected—first evidence of chemical defense in oribatid mites. J Chem Ecol 37:1037–1043. doi: 10.1007/s10886-011-0009-2 PubMedCrossRefGoogle Scholar
  13. Heethoff M, Laumann M, Weigmann G, Raspotnig G (2011b) Integrative taxonomy: combining morphological, molecular and chemical data for species delineation in the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae). Front Zool 8:2. doi: 10.1186/1742-9994-8-2 PubMedCrossRefGoogle Scholar
  14. Laumann M, Bergmann P, Norton RA, Heethoff M (2010) First cleavages, preblastula and blastula in the parthenogenetic mite Archegozetes longisetosus (Acari, Oribatida) indicate holoblastic rather than superficial cleavage. Arth Struct Dev 39:276–286. doi: 10.1016/j.asd.2010.02.003 CrossRefGoogle Scholar
  15. Pomini AM, Machado G, Pinto-da-Rocha R, Macias-Ordonez R, Marsaioli AJ (2010) Lines of defense in the harvestman Hoplobunus mexicanus (Arachnida: Opiliones): aposematism, stridulation, thanatosis, and irritant chemicals. Biochem Syst Ecol 38:300–308. doi: 10.1016/j.bse.2010.03.003 CrossRefGoogle Scholar
  16. Raspotnig G (2006) Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari: Oribatida). Exp Appl Acarol 39:177–194. doi: 10.1007/s10493-006-9015-4 PubMedCrossRefGoogle Scholar
  17. Raspotnig G, Norton RA, Heethoff M (2011) Oribatid mites and skin alkaloids in poison frogs. Biol Lett 7:555–556. doi: 10.1098/rsbl.2010.1113 PubMedCrossRefGoogle Scholar
  18. Sakata T, Norton RA (2001) Opisthonotal gland chemistry of early-derivative oribatid mites (Acari) and its relevance to systematic relationships of Astigmata. Int J Acarol 27:281–292CrossRefGoogle Scholar
  19. Sanders FH, Norton RA (2004) Anatomy and function of the ptychoid defensive mechanism in the mite Euphthiradarus cooki (Acari: Oribatida). J Morphol 259:119–154 Google Scholar
  20. Shimano S, Sakata T, Mizutani Y, Kuwahara Y, Aoki J (2002) Geranial: the alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. J Chem Ecol 28:1831–1837PubMedCrossRefGoogle Scholar
  21. Souza ES, Willemart RH (2011) Harvest-Ironman: heavy armature, and not its defensive secretions, protects a harvestman against a spider. Anim Behav 81:127–133. doi: 10.1016/j.anbehav.2010.09.023 CrossRefGoogle Scholar
  22. Thomas RH (2002) Mites as models in development and genetics. In: Bernini F, Nannelli R, Nuzzaci G, de Lillo E (eds) Acarid phylogeny and evolution: adaptation in mites and ticks: proceedings of the IV symposium of the European association of acarologists. Kluwer, Dordrecht, pp 21–26Google Scholar
  23. Tomita A, Shimizu N, Mori N, Nishida R, Nakao H, Kuwahara Y (2003) Chemical ecology of astigmatid mites. LXXI. Neryl formate (Z)-3,7-dimethyl-2,6-octadienyl formate as the alarm pheromone of Tyroborus lini Oudemans 1924, and its recovery after forced discharge. J Acarol Soc Jpn 12:11–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of ZoologyKarl-Franzens UniversityGrazAustria
  2. 2.Institute for Evolution and EcologyUniversity TübingenTübingenGermany

Personalised recommendations