Experimental and Applied Acarology

, Volume 55, Issue 1, pp 39–63 | Cite as

Species diversity of edaphic mites (Acari: Oribatida) and effects of topography, soil properties and litter gradients on their qualitative and quantitative composition in 64 km2 of forest in Amazonia

  • Jamile de MoraesEmail author
  • Elizabeth Franklin
  • José Wellington de Morais
  • Jorge Luiz Pereira de Souza


Small-scale spatial distribution of oribatid mites has been investigated in Amazonia. In addition, medium- and large-scale studies are needed to establish the utility of these mites in detecting natural environmental variability, and to distinguish this variability from anthropogenic impacts. We are expanding the knowledge about oribatid mites in a wet upland forest reserve, and investigate whether a standardized and integrated protocol is an efficient way to assess the effects of environmental variables on their qualitative and quantitative composition on a large spatial scale inside an ecological reserve in Central Amazonia, Brazil. Samples for Berlese-Tullgren extraction were taken in 72 plots of 250 × 6 m distributed over 64 km2. In total 3,182 adult individuals, from 82 species and 79 morphospecies were recorded, expanding the number of species known in the reserve from 149 to 254. Galumna, Rostrozetes and Scheloribates were the most speciose genera, and 57 species were rare. Rostrozetes ovulum, Pergalumna passimpuctata and Archegozetes longisetosus were the most abundant species, and the first two were the most frequent. Species number and abundance were not correlated with clay content, slope, pH and litter quantity. However, Principal Coordinate Analysis indicated that as the percentage of clay content, litter quantity and pH changed, the oribatid mite qualitative and quantitative composition also changed. The standardized protocol effectively captured the diversity, as we collected one of the largest registers of oribatid mites’ species for Amazonia. Moreover, biological and ecological data were integrated to capture the effects of environmental variables accounting for their diversity and abundance.


Environmental gradients Large-scale survey Mesofauna Oribatids Protocol Reserva Ducke 



Financial support came from Project PIPT/FAPEAM ‘Diversidade da fauna de invertebrados de solo e folhiço com ênfase em Formicidae, Diplura, Scorpiones, Pseudoscorpionida e Acari Oribatida da Reserva Ducke, Manaus, AM’, and Project 550409/01-7, Conselho Nacional de Desenvolvimento científico e Tecnológico (CNPq), Projeto Norte de Pós-Graduação (PNOPG), ‘Populações e comunidades de invertebrados do solo da Reserva Ducke, Manaus, AM. Thanks are due to Dr. Anibal R. Oliveira and three anonymous referees for their fruitful contributions. The samplings were done in collaboration with two Master degree students, E. Fagundes and R. L. Guimarães. Most of the trail system was financed by a CNPq/PNOPG grant to Dr. R. Luizão (INPA). Dr. A. Lima and Dr. R. Luizão (INPA) installed most of the trail system and associated infrastructure.


  1. André HM, Ducarme X, Lebrun P (2002) Soil biodiversity: myth, reality or conning? Oikos 96:3–24. doi: 10.1034/j.1600-0706.2002.11216.x CrossRefGoogle Scholar
  2. Balogh J (1972) The oribatid genera of the world. Akadémiai Kiadó, BudapestGoogle Scholar
  3. Balogh J, Balogh P (1988) Oribatid mites of the neotropical region I (The soil mites of the world, 2). Elsevier, AmsterdamGoogle Scholar
  4. Balogh J, Balogh P (1990) Oribatid mites of the neotropical region II (The soil mites of the world, 3). Elsevier, AmsterdamGoogle Scholar
  5. Balogh J, Balogh P (1992a) The oribatid mites genera of the world, vol 1. Hungarian Natural History Museum, BudapestGoogle Scholar
  6. Balogh J, Balogh P (1992b) The oribatid mites genera of the world, vol 2. Hungarian Natural History Museum, BudapestGoogle Scholar
  7. Beck L (1971) Bodenzoologische Gliederung und Charakterisierung des amazonischen Regenwaldes. Amazoniana 3(1):69–132Google Scholar
  8. Beck L, Woas S, Horak F (1997) Taxonomische Ebenen als Basis der Bioindikation–Fallbeispiele aus der Gruppe der Oribatiden (Acari). Abh Ber Naturkundemus Görlitz 69(2):67–85Google Scholar
  9. Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423. doi: 10.1016/S0167-8809(99)00046-8 CrossRefGoogle Scholar
  10. Castilho CV, Magnusson WE, Araújo RNO, Luizão RCC, Luizão F, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian Forest: effects of soil and topography. For Ecol Manag 234:85–96. doi: 10.1016/j.foreco.2006.06.024 CrossRefGoogle Scholar
  11. Chauvel A, Lucas Y, Boulet R (1987) On genesis of the mantle of the region of Manaus, Central Amazonia, Brazil. Experientia 43:234–241CrossRefGoogle Scholar
  12. Claessen MEC (1997) Manual de métodos de análise de solo. CNPS, Rio de Janeiro, EmbrapaGoogle Scholar
  13. Coleman DC (2008) From peds to paradoxes: linkages between soil biota and their influences on ecological processes. Soil Biol Biochem 40:271–289. doi: 10.1016/j.soilbio.2007.08.005 CrossRefGoogle Scholar
  14. Colwell RK (1997) Estimates: statistical estimation of species richness and shared species from samples. User’s guide and application published online. http://viceroy.
  15. Colwell RK, Chang XM, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 850:2717–2727. doi: 10.1890/03-0557 CrossRefGoogle Scholar
  16. Costa FRC (2006) Mesoscale gradients of herb richness and abundance in Central Amazonia. Biotropica 38(6):711–717. doi: 10.1111/j.1744-7429.2006.00211.x CrossRefGoogle Scholar
  17. Costa FRC, Magnusson WE (2010) The need for large-scale, integrated studies of biodiversity—the experience of the Program for Biodiversity Research in Brazilian Amazonia. Nat Conservação 8(1):3–12. doi: 10.4322/natcon.00801001 CrossRefGoogle Scholar
  18. Costa FRC, Magnusson WE, Luizão R (2005) Mesoscale distribution patterns of Amazonian understory herbs in relation to topography, soil and watersheds. J Ecol 93:863–878. doi: 10.1111/j.1365-2745.2005.01020.x CrossRefGoogle Scholar
  19. Costa F, Castilho C, Drucker DP, Kinupp V, Nogueira A, Spironello W (2008) Flora. In: Oliveira ML, Baccaro FB, Braga-Neto R, Magnusson WE (eds) Reserva Ducke: a biodiversidade através de uma grade. Áttema Design Editorial, Manaus, pp 21–30Google Scholar
  20. Fagan LL, Didham RK, Winchester NN, Behan-Pelletier V, Clayton M, Lindquist E, Ring RA (2005) An experimental assessment of biodiversity and species turnover in terrestrial vs canopy leaf litter. Oecologia 147(2) 335–347. doi:  10.1007/s00442-005-0262-6 Google Scholar
  21. Franklin E, Morais JW (2006) Soil mesofauna in Central Amazon. In: Moreira FMS, Siqueira JO, Brussaard L (eds) Soil biodiversity in Amazonian and other Brazilian ecosystems. Oxfordshire CABI Publishing, Wageningen, pp 142–162CrossRefGoogle Scholar
  22. Franklin EN, Adis J, Woas S (1997a) The Oribatid Mites. In: Junk WJ (ed) Central Amazonian river floodplains: ecology of a pulsing systems. Springer, Berlin, pp 331–349Google Scholar
  23. Franklin EN, Schubart HOR, Adis JU (1997b) Ácaros do solo (Acari: Oribatida) edáficos de duas florestas inundáveis da Amazônia Central: distribuição vertical, abundância e recolonização do solo após inundação. Rev Bras Biol 57(3):501–520Google Scholar
  24. Franklin EN, Morais JW, Santos EMR (2001) Density and biomass of Acari and Collembola in primary forest, secondary forest and polycultures in central Amazônia. Andrias 15:141–153Google Scholar
  25. Franklin E, Hayek T, Fagundes EP, Silva LL (2004) Oribatid Mite (Acari: Oribatida) contribution to decomposition dynamic of leaf litter in primary forest, second growth, and polyculture in the Central Amazon. Braz J Biol 64(1):59–72PubMedCrossRefGoogle Scholar
  26. Franklin E, Magnusson WE, Luizão FJ (2005) Relative effects of biotic and abiotic factors on the composition of soil invertebrate communities in an Amazonian savanna. Appl Soil Ecol 29:259–273. doi: 10.1016/j.apsoil.2004.12.004 CrossRefGoogle Scholar
  27. Franklin E, Santos EMR, Albuquerque MIC (2006) Diversity and distribution of oribatid mites (Acari: Oribatida) in lowland rain forest in Peru and in several environments of the Brazilians States of Amazonas, Rondônia, Roraima and Pará. Braz J Biol 66(4):999–1020. doi: 10.1590/S1519-69842006000600007 PubMedCrossRefGoogle Scholar
  28. Franklin E, Santos EMR, Albuquerque MIC (2007) Edaphic and arboricolous oribatid mites (Acari; Oribatida) in tropical environments: changes in the distribution of higher level taxonomic groups in the community of species. Braz J Biol 67(2):631–637. doi: 10.1590/S1519-69842007000300009 Google Scholar
  29. Franklin E, Aguiar NO, Soares EDL (2008) Invertebrados do solo. In: Oliveira ML, Baccaro FB, Braga-Neto R, Magnusson WE (eds) Reserva Ducke: a biodiversidade através de uma grade. Áttema Design Editorial, Manaus, pp 109–122Google Scholar
  30. Grandjean F (1953) Essai de classification des Oribates (Acariens). Bull Soc Zool Fr 78:421–446Google Scholar
  31. Grandjean F (1965) Complément à mon travail de 1953 sur la classification des Oribates. Acarologia 7:713–734Google Scholar
  32. Grandjean F (1969) Considération sur le classement des Oribates. Leurs division en 6 groupes majeurs. Acarologia 10:127–153Google Scholar
  33. Guillaumet JL (1987) Some structureal and floristic aspects of the forest. Experientia 43:241–251CrossRefGoogle Scholar
  34. Hansen RA (2000) Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81(4):1120–1132. doi: 10.1890/0012-9658(2000)081[1120:EOHCAC]2.0.CO;2 CrossRefGoogle Scholar
  35. Höfer H, Hanagarth W, Garcia M, Martius C, Franklin E, Römbke J, Beck L (2001) Structure and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems. Eur J Soil Biol 37:229–235. doi: 10.1016/S1164-563(01)01089-5 CrossRefGoogle Scholar
  36. Karyanto A, Rahmadi C, Franklin E, Morais JW (2008) Soil Collembola, Acari and other mesofauna—the Berlese method. In: Moreira FMS, Huising EJ, Bignall DE (eds) A handbook of tropical soil biology: sampling and characterization of below-ground biodiversity. Earthscan, London, pp 85–94Google Scholar
  37. Kaspari M, Weiser MD (2000) Ant activity along moisture gradients in a tropical forest. Biotropica 32(4):703–711. doi: 10.1646/0006-3606(2000)032[0703:AAAMGI]2.0.CO;2 CrossRefGoogle Scholar
  38. Lamoncha KL, Crossley DA (1998) Oribatid mite diversity along an elevation gradient in a southeastern appalachian forest. Pedobiologia 42:43–55Google Scholar
  39. Lindo Z, Winchester NN (2009) Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160(4):817–825. doi: 10.1007/s00442-009-1348-3 PubMedCrossRefGoogle Scholar
  40. Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruij B (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Glob Change Biol 10:592–600. doi: 10.1111/j.1529-8817.2003.00757.x CrossRefGoogle Scholar
  41. Magnusson WE, Lima AP, Luizão R, Luizão F, Costa FRC, Castilho CV, Kinupp VF (2005) RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotrop 5(2):1–6. doi: 10.1590/S1676-06032005000300002 CrossRefGoogle Scholar
  42. Maraun M, Schatz H, Scheu S (2007) Awesome or ordinary? Global diversity patterns of oribatid mites. Ecography 30:209–216. doi: 10.1111/j.0906-7590.2007.04994.x Google Scholar
  43. Maraun M, Illig J, Sandmann JD, Krashevskaya V, Norton R, Scheu S (2008) Soil fauna. In: E. Beck et al. (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies. Springer, Berlin, pp 181–192Google Scholar
  44. Marques-Filho AO, Ribeiro MNG, Santos JM (1981) Estudos climatológicos da Reserva Florestal Ducke, Manaus, AM. IV–Precipitação. Acta Amazonica 4:759–768Google Scholar
  45. Michin PR (1987) An evaluation of relative robustness of techniques for ecological ordination. Plant Ecol 69:89–107. doi: 10.1007/BF00038690 CrossRefGoogle Scholar
  46. Norton RA, Behan-Pelletier VM (2009) Suborder Oribatida. In: Krantz GW, Walter DE (eds) A manual of acarology. Texas Tech University Press, Lubbock, Texas, pp 430–564Google Scholar
  47. Norton RA, Kethley J (1989) Berlese’s North American oribatid mites: historical notes, recombinations, synonymies and type designations. Redia 62(2):421–499Google Scholar
  48. Noti MI, André HM, Ducarme X, Lebrun P (2003) Diversity of soil oribatid mites (Acari: Oribatida) from High Katanga (Democratic Republic of Congo): a multiscale and multifactor approach. Biodivers Conserv 12:767–785. doi: 10.1023/A:1022474510390 CrossRefGoogle Scholar
  49. Oliveira AR, Norton RA, Moraes GJ (2005) Edaphic and plant inhabiting oribatid mites (Acari: Oribatida) from Cerrado and Mata Atlântica ecosystems in the State of São Paulo, southeast Brazil. Zootaxa 1049:49–68Google Scholar
  50. Oliveira PY, Souza JLP, Baccaro FB, Franklin E (2009) Ant species distribution along a topographic gradient in a terra-firme forest in Central Amazon. Pesqu Agropecu Bras 44:852–860. doi: 10.1590/S0100-204×2009000800008 CrossRefGoogle Scholar
  51. Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39(3):287–388CrossRefGoogle Scholar
  52. Philippi T, Dixon PM, Taylor BM (1998) Detecting trends in species composition. Ecol Appl 8:300–308. doi: 10.1890/1051-0761(1998)008[0300:DTISC]2.0.CO;2 CrossRefGoogle Scholar
  53. R Development Core Team (2010) R: A. language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  54. Ribeiro EF, Schubart HOR (1989) Oribatídeos (Acari: Oribatida) colonizadores de folhas em decomposição de três sítios florestais da Amazônia Central. Bol Mus Para Emilio Goeldi Ser Zool 5(2):253–276Google Scholar
  55. Ribeiro JELS, Hopkins MJG, Vicentini A, Sothers CA, Costa MAS, Brito JM, Souza MAD, Martins LHP, Lohmann LG, Assunção PACL, Pereira EC, Silva CF, Mesquita MR, Procópio LC (1999) Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  56. Ruf A, Beck L (2005) The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. Ecotoxicol Environ Saf 62:290–299. doi: 10.1016/j.ecoenv.2005.03.029 PubMedCrossRefGoogle Scholar
  57. Santos EMR, Franklin E, Magnusson WE (2008) Cost-efficiency of subsampling protocols to evaluate oribatid-mite communities in an Amazonian Savanna. Biotropica 40(6):728–735. doi: 10.1111/j.1744-7429.2008.00425.x CrossRefGoogle Scholar
  58. Schatz H (2005) Diversity and global distribution of oribatid mites evaluation of the present state of knowledge. In: Weigmann G, Alberti G, Wohltmann A, Ragusa S (eds) Acarine biodiversity in the natural and human sphere. Proceedings of the V symposium of the European association of Acarologists (Berlin 2004), Phytophaga (Palermo) 14 (2004), pp 485–500Google Scholar
  59. Stefaniak O, Seniczak S (1981) The effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract. Pedobiologia 21:202–210Google Scholar
  60. Toti DS, Coyle FA, Miller JA (2000) A structured inventory of appalachian grass bald and health bald spider asemblages and a test of species richness estimator performance. J Arachnol 28:329–345CrossRefGoogle Scholar
  61. van Straalen NM, Verhoef HA (1997) The development of a bioindicator system for soil acidity based arthropod pH preferences. J Appl Ecol 34:217–232CrossRefGoogle Scholar
  62. Vasconcelos HL, Macedo ACC, Vilhena JMS (2003) Influence of topography on the distribution of ground-dwelling ants in an amazonian forest. Stud Neotrop Fauna Environ 38:115–124. doi: 10.1076/snfe. CrossRefGoogle Scholar
  63. Woas S (2002) Acari. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft, Sofia, Moscow, pp 21–291Google Scholar
  64. Wunderle I (1985) Ein faunistich-ökologischer vergleich der Baum- und Bodenbewohnenden Oribatiden (Acari) im Tieflanderegenwald von Panguana, Peru. Dissertation, Universität KarlsruheGoogle Scholar
  65. Wunderle I (1992a) Die Baum-und bodenbewohnenden Oribatiden (Acari) im Tief-landeregenwald von Panguana, Peru. Amazoniana 17(1):119–142Google Scholar
  66. Wunderle I (1992b) Die Oribatiden-Gemeinschaften (Acari) der verschiedenen Habitate eines Buchenwaldes. Carolinea 50:79–144Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jamile de Moraes
    • 1
    Email author
  • Elizabeth Franklin
    • 2
  • José Wellington de Morais
    • 2
  • Jorge Luiz Pereira de Souza
    • 3
  1. 1.Programa de Pós-Graduação em Entomologia, Instituto Nacional de Pesquisas da Amazônia, CPENINPAManausBrazil
  2. 2.Coordenação de Pesquisas em Entomologia, CPENINPAManausBrazil
  3. 3.Programa de Pós-Graduação em Entomologia, CPENINPAManausBrazil

Personalised recommendations