Experimental and Applied Acarology

, Volume 52, Issue 3, pp 275–290 | Cite as

Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards

  • Julie Mailloux
  • Fabrice Le BellecEmail author
  • Serge Kreiter
  • Marie-Stéphane Tixier
  • Pauline Dubois


The abundance and diversity of phytoseiid mites in the vegetal ground cover of a citrus orchard were surveyed by monthly samplings from October 2008 to July 2009. Six different vegetal cover management methods were studied: herbicide application without mowing (Gly), mowing without herbicide application (PV), mowing with herbicide application (AV), late mowing without herbicide application (LMV), cover crop (Neonotonia wightii, Fabaceae) without herbicide application (PNeo) and cover crop with herbicide application (ANeo). Eleven species were present in the ground cover, with Phytoseius rex and Proprioseiopsis mexicanus as major species. Species richness and densities (1.5 ± 4.5) in the Gly treatment were very low, except for one sample 4 months after herbicide treatment. The AV and PV treatments showed poor diversity and very low mite densities (1.2 ± 2.6 and 1.4 ± 1.5, respectively). The LMV treatment showed the highest diversity and high density of phytoseiid mites (6.9 ± 8.8). The ANeo and PNeo treatments also showed generally high diversity, but with variations in time and exhibited the highest density of phytoseiid mites (13.5 ± 12.7 and 13.4 ± 9.1, respectively). Neonotonia wightii as the cover crop seems to act as a reservoir of phytoseiid mites, sustaining abundant and diverse populations all year round. Some naturally occurring plant species such as Achyranthes aspera, Amaranthus dubius and Eleutheranthera ruderalis could also constitute favourable host plants for Phytoseiidae. Results are discussed in relation to the potential of collected phytoseiid species as candidates for biological control of phytophagous mites on Guadeloupean citrus orchards.


Phytoseiidae Ground cover Citrus groves Neonotonia wightii Biological control of phytophagous mites 


  1. Barbar Z, Tixier M-S, Kreiter S, Cheval B (2005) Diversity of phytoseiid mites in uncultivated areas adjacent to vineyards: a case study in the south of France. Acarologia 45:145–154Google Scholar
  2. Beaulieu F, Weeks AR (2007) Free-living mesostigmatic mites in Australia: their roles in biological control and bioindication. Aust J Exp Agr 47:460–478CrossRefGoogle Scholar
  3. Boller EF (1984) Eine einfache Ausschwemm-Methode zur schnellen Erfassung von Raubmilben, Thrips und anderen Kleinarthropoden im Weinbau. Schweiz Zeitschrift für Obst-Weinbau 120:249–255Google Scholar
  4. Browning HW (1999) Arthropod pests of fruit and foliage. In: Timmer LW, Duncan LW (eds) Citrus health management. University of Florida, Citrus Research and Education Center, Lake Alfred, pp 116–123Google Scholar
  5. Chant DA, McMurtry JA (2007) Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House, West Bloomfield, 220 ppGoogle Scholar
  6. Childers CC, Rogers ME, McCoy CW, Nigg HN, Stansly PA (2007) Florida citrus pest management guide: rust mites, spider mites and other phytophagous mites. University of Florida IFAS extensionGoogle Scholar
  7. Collier KFS, de Lima JOG, Albuquerque GS (2004) Predacious mites in Papaya (Carica papaya L.) orchards: in search of a biological control agent of phytophagous mite pests. Neotrop Entomol 33(6):799–803CrossRefGoogle Scholar
  8. de Roffignac L, Ramassamy M, Le Bellec F, Le Bellec V (2006) Mise en place des principes de la production fruitière intégrée chez les producteurs. In: Le Bellec Fabrice La production fruitière intégrée en verger en Guadeloupe. Intégration de la biodiversité dans les systèmes de culture : résumés des interventions, Vieux-Habitants (Guadeloupe), 9 November 2006. CIRAD, Montpellier, 1 ppGoogle Scholar
  9. Duso C, Fontana P, Malagnini V (2004) Diversity and abundance of phytoseiids mites (Acari: Phytoseiidae) in vineyards and the surrounding vegetation in northeastern Italy. Acarologia 44:31–47Google Scholar
  10. Fadamiro HY, Xiao Y, Nesbitt M, Childers CC (2009) Diversity and seasonal abundance of predacious mites in Alabama Satsuma Citrus. Ann Entomol Soc Am 102(4):617–628CrossRefGoogle Scholar
  11. Gerson U (1992) Biology and control of the broad mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Exp Appl Acarol 13:163–178CrossRefGoogle Scholar
  12. Grafton-Cardwell EE, Ouyang Y, Bugg RL (1999) Leguminous cover crops to enhance population development of Euseius tularensis (Acari : Phytoseiidae) in Citrus. Biol Contr 16:73–80CrossRefGoogle Scholar
  13. Gravena S, Coletti A, Yamamoto PT (1993) Influence of green cover with Ageratum conyzoides and Eupatorium pauciflorum on predatory and phytophagous mites in citrus. Bull IOBC-SROP 16(7):104–114Google Scholar
  14. Grout TG (1994) The distribution and abundance of phytoseiid mites (Acari: Phytoseiidae) on citrus in southern Africa and their possible value as predators of citrus thrips (Thysanoptera: Thripidae). Exp Appl Acarol 18:61–71CrossRefGoogle Scholar
  15. Hislop RI, Prokopy RJ (1981) Integrated management of phytophagous mites in Massachusetts (USA) apple orchards. 2. Influence of pesticides on the predator Amblyseius fallacis (Acarina: Phytoseiidae) under laboratory and field conditions. Prot Ecol 3:157–172Google Scholar
  16. Huang M, Mai X, Wu W (1978) Studies on the integrated control of the citrus red mite with the predacious mite as a principal controlling agent. Acta Entomol Sinica 21(3):260–270Google Scholar
  17. Karban R, English-Loeb G, Walker MA, Thaler J (1995) Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp Appl Acarol 19:189–197CrossRefGoogle Scholar
  18. Kong C, Hu F, Xu X, Zhang H, Liang W (2005) Volatile allelochemicals in the Ageratum conyzoides intercropped citrus orchard and their effects on mites Amblyseius newami and Panonychus citri. J Chem Ecol 31(9):2193–2203CrossRefPubMedGoogle Scholar
  19. Kongchuensin M, Charanasri V, Takafuji A (2005) Geographic distribution of Neoseiulus longispinosus (Evans) and its habitat plants in Thailand. J Acarol Soc Jpn 14(1):1–11CrossRefGoogle Scholar
  20. Kreiter S, Le Menn V (1993) Interactions entre le désherbage chimique de la vigne et les populations d’acariens phytophages et prédateurs. In: Résultats de laboratoire. AFPP, Troisième Conférence Internationale sur les Ravageurs en Agriculture, Montpellier, 7–9 December 1993, pp 821–830Google Scholar
  21. Kreiter S, Tixier M-S, Auger P, Strafile D, Barret D (1999) Importance de la pilosité et des domaties des feuilles des plantes sur les Phytoseiidae (Acari). In: AFPP, Cinquième Conférence Internationale sur les Ravageurs en Agriculture, Montpellier, 7–8–9 December 1999, pp 699–712Google Scholar
  22. Kreiter S, Tixier M-S, Croft BA, Auger P, Barrret D (2002) Plants and leaf characteristics influencing the predaceous mite, Kampimodromus aberrans, in habitats surrounding vineyards. Environ Entomol 31(4):648–660CrossRefGoogle Scholar
  23. Kreiter S, Tixier M-S, Barbar Z (2005) Quelle sorte de prédateurs les Phytoseiidae sont-ils réellement ? Les différentes catégories fonctionnelles de prédateurs et celles utiles en agriculture en France (Acari). In: AFPP, Deuxième Colloque International sur les Acariens des Cultures, Montpellier 24–25 October 2005, 11 ppGoogle Scholar
  24. Kreiter S, Tixier M-S, Etienne J (2006) New records of phytoseiid mites (Acari: Mesostigmata) from the French Antilles, with description of Neoseiulus cecilae sp. nov. Zootaxa 1294:1–27Google Scholar
  25. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201CrossRefPubMedGoogle Scholar
  26. Le Bellec F, Malezieux E, Bockstaller C, Ozier Lafontaine H, Lesueur-Jannoyer M (2009a) A participatory method to design innovative sustainable cropping systems for citrus production at the field scale in the French West Indies. Farming System Design, 23–26 August 2009, Monterey, 2 ppGoogle Scholar
  27. Le Bellec F, Tournebize R, Petit J-M (2009b) Les pratiques respectueuses de l’environnement, gestion de l’enherbement des vergers par des plantes de couvertures : un exemple en l’agrumiculture guadeloupéenne. Les Antilles Agricoles 17:32–33Google Scholar
  28. Liang WG, Huang MD (1994) Influence of citrus orchard ground cover plants on arthropod communities in China: a review. Agric Ecosyst Environ 50(1):29–37CrossRefGoogle Scholar
  29. McMurtry JA (1982) The use of phytoseiids for biological control: progress and future prospects. In: Hoy MA (ed) Recent advances in knowledge of the Phytoseiidae. University of California, Division of Agricultural Sciences, Berkeley, pp 23–28Google Scholar
  30. McMurtry JA, Croft BA (1997) Life-styles of Phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321CrossRefPubMedGoogle Scholar
  31. Muma MH (1961) The influence of cover crop cultivation on populations of indigenous insects and mites in Florida citrus groves. Fla Entomol 44:61–68CrossRefGoogle Scholar
  32. Nyrop JP, Minns JC, Herring CP (1994) Influence of ground cover on dynamics of Amblyseius fallacis Garman (Acarina: Phytoseiidae) in New York apple orchards. Agric Ecosyst Environ 50:61–72CrossRefGoogle Scholar
  33. Ortuno MF, Garcia-Orellana Y, Conejero W, Perez-Sarmiento F, Torrecillas A (2008) Assessment of maximum daily trunk shrinkage signal intensity threshold values for deficit irrigation in lemon trees. Agric Water Manag 96(1):80–86CrossRefGoogle Scholar
  34. Ramos M, Rodriguez N (1997) Acaros fitoseidos Phytoseiidae en el cultivo de la papa: descripcion de una nueva especie. Rev Protección Veg 12(2):109–112Google Scholar
  35. Rodriguez N, Ramos M (2004) Biology and feeding behaviour of Amblyseius largoensis (Muma) (Acari: Phytoseiidae) on Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Rev Protección Veg 19(2):73–79Google Scholar
  36. Schneider MI, Sanchez N, Pineda S, Chi H, Ronco A (2009) Impact of glyphosate on the development, fertility and demography of Chrysoperla externa (Neuroptera: Chrysopidae): ecological approach. Chemosphere 76:1451–1455CrossRefPubMedGoogle Scholar
  37. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  38. Tixier M-S, Kreiter S, Auger P, Weber M (1998) Colonization of Languedoc vineyards by phytoseiid mites influence of wind and crop environment. Exp Appl Acarol 22:523–542CrossRefGoogle Scholar
  39. Tixier M-S, Kreiter S, Cheval B, Guichou S, Auger P, Bonafos R (2006) Immigration of phytoseiid mites from surrounding uncultivated areas into a newly planted vineyard. Exp Appl Acarol 39:227–242CrossRefPubMedGoogle Scholar
  40. Toyoshima S, Ihara F, Amano H (2008) Diversity and abundance of phytoseiid mites in natural vegetation in the vicinity of apple orchards in Japan. Appl Entomol Zool 43(3):443–450CrossRefGoogle Scholar
  41. Tuovinen T, Rokx JAH (1991) Phytoseiid mites (Acari: Phytoseiidae) on apple trees and in surrounding vegetation in southern Finland. Densities and species composition. Exp Appl Acarol 12:35–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Julie Mailloux
    • 1
  • Fabrice Le Bellec
    • 1
    Email author
  • Serge Kreiter
    • 2
  • Marie-Stéphane Tixier
    • 2
  • Pauline Dubois
    • 1
  1. 1.CIRADGuadeloupeFrance
  2. 2.Montpellier SupAgro Montpellier cedex 02France

Personalised recommendations