Advertisement

Experimental and Applied Acarology

, Volume 52, Issue 3, pp 305–311 | Cite as

Genetic characterization of ticks from southwestern Romania by sequences of mitochondrial cox1 and nad5 genes

  • Lidia Chitimia
  • Rui-Qing LinEmail author
  • Iustin Cosoroaba
  • Xiang-Yun Wu
  • Hui-Qun Song
  • Zi-Guo Yuan
  • Xing-Quan ZhuEmail author
Article

Abstract

In the present study, samples representing three hard tick species and one soft tick species, namely Dermacentor marginatus, Haemaphysalis punctata, Ixodes ricinus and Argas persicus from southwestern Romania, and one hard tick, Haemaphysalis longicornis, from China were characterized genetically by a portion of mitochondrial cytochrome c oxidase subunit 1 gene (pcox1) and a portion of nicotinamide adenine dinucleotide dehydrogenase subunit 5 gene (pnad5). The pcox1 and pnad5 were amplified separately from individual ticks by PCR, sequenced and analyzed. The length of pcox1 and pnad5 sequences of all samples was 732 and 519 bp, respectively. The intra-specific sequence variation in De. marginatus was 0.1–1.0% for pcox1 and 0.2–1.2% for pnad5, whereas in Ha. punctata it was 0.4–1.9% for pcox1 and 0.4–1.0% for pnad5. For the tick species examined in the present study, sequence comparison revealed that the inter-specific sequence differences were higher: 15.9–27.6% for pcox1 and 20.3–42.4% for pnad5. This suggests that the cox1 and nad5 sequences could provide useful genetic markers for the specific identification and genetic characterization of ticks in Romania and elsewhere.

Keywords

Ticks Cytochrome c oxidase subunit 1 gene (cox1) Nicotinamide adenine dinucleotide dehydrogenase subunit 5 gene (nad5) Phylogenetic analysis Romania Mitochondrial DNA 

Notes

Acknowledgments

This work is supported by a grant from the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0723).

References

  1. Black WC IV, Piesman J (1994) Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA 91:10034–10038CrossRefPubMedGoogle Scholar
  2. Black WC IV, Roehrdanz RL (1998) Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Mol Biol Evol 15:1772–1785PubMedGoogle Scholar
  3. Black WC IV, Klompen JS, Keirans JE (1997) Phylogenetic relationships among tick subfamilies (Ixodida: Ixodidae: Argasidae) based on the 18S nuclear rDNA gene. Mol Phylogenet Evol 7:129–144CrossRefPubMedGoogle Scholar
  4. Boore JL, Brown WM (2000) Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17:87–106PubMedGoogle Scholar
  5. Boore JL, Staton JL (2002) The mitochondrial genome of the sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Mol Biol Evol 19:127–137PubMedGoogle Scholar
  6. Caporale DA, Rich SM, Spielman A et al (1995) Discriminating between Ixodes ticks by means of mitochondrial DNA sequences. Mol Phylogenet Evol 4:361–365CrossRefPubMedGoogle Scholar
  7. Dantas-Torres F (2008) The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): from taxonomy to control. Vet Parasitol 152:173–185CrossRefPubMedGoogle Scholar
  8. Geraci NS, Spencer Johnston J, Paul Robinson J et al (2007) Variation in genome size of argasid and ixodid ticks. Insect Biochem Mol Biol 37:399–408CrossRefPubMedGoogle Scholar
  9. Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  10. Lavrov DV, Brown WM, Boore JL (2004) Phylogenetic position of the Pentastomida and (pan) crustacean relationships. Proc R Soc Lond B 271:537–544CrossRefGoogle Scholar
  11. Li MW, Lin RQ, Song HQ et al (2008) Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 29:2912–2917PubMedGoogle Scholar
  12. Lynen G, Zeman P, Bakuname C et al (2007) Cattle ticks of the genera Rhipicephalus and Amblyomma of economic importance in Tanzania: distribution assessed with GIS based on an extensive field survey. Exp Appl Acarol 43:303–319CrossRefPubMedGoogle Scholar
  13. Macey JR, Schulte JA, Larson A (2000) Evolution and phylogenetic information content of mitochondrial genomic structural features illustrated with acrodont lizards. Syst Biol 49:257–277CrossRefPubMedGoogle Scholar
  14. Marrelli MT, Souza LF, Marques RC, Labruna MB, Matioli SR, Tonon AP, Ribolla PEM, Marinotti O, Schumaker TTS (2007) Taxonomic and phylogenetic relationships between neotropical species of ticks from genus Amblyomma (Acari: Ixodidae) inferred from second internal transcribed spacer sequences of rDNA. J Med Entomol 44:222–228CrossRefPubMedGoogle Scholar
  15. Morrison CL, Harvey AW, Lavery S et al (2002) Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form. Proc R Soc Lond B 269:345–350CrossRefGoogle Scholar
  16. Pagel Van Zee J, Geraci NS, Guerrero FD et al (2007) Tick genomics: the Ixodes genome project and beyond. Int J Parasitol 37:1297–1305CrossRefPubMedGoogle Scholar
  17. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  18. Rees DJ, Dioli M, Kirkendall LR (2003) Molecules and morphology: evidence for cryptic hybridization in African Hyalomma (Acari: Ixodidae). Mol Phylogenet Evol 27:131–142CrossRefPubMedGoogle Scholar
  19. Shao R, Barker S (2006) Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 134:153–167CrossRefPubMedGoogle Scholar
  20. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and Other Methods). Sinauer Associates, SunderlandGoogle Scholar
  21. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  22. Thompson JD, Gibson TJ, Plewniak F et al (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  23. Willadsen P (2006) Vaccination against ectoparasites. Parasitology 133:S9–S25CrossRefPubMedGoogle Scholar
  24. Yin H, Luo J (2007) Ticks of small ruminants in China. Parasitol Res 101:S187–S189CrossRefPubMedGoogle Scholar
  25. Zahler M, Gothe R, Rinder H (1995) Genetic evidence against a morphologically suggestive conspecificity of Dermacentor reticulatus and D. marginatus (Acari: Ixodidae). Int J Parasitol 25:1413–1419CrossRefPubMedGoogle Scholar
  26. Zhao GH, Mo XH, Zou FC et al (2009) Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Vet Parasitol 162:67–74CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lidia Chitimia
    • 1
    • 4
  • Rui-Qing Lin
    • 1
    Email author
  • Iustin Cosoroaba
    • 2
  • Xiang-Yun Wu
    • 3
  • Hui-Qun Song
    • 1
  • Zi-Guo Yuan
    • 1
  • Xing-Quan Zhu
    • 1
    • 5
    Email author
  1. 1.Department of Parasitology, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of ParasitologyFaculty of Veterinary MedicineTimisoaraRomania
  3. 3.Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouPeople’s Republic of China
  4. 4.Institute for Diagnosis and Animal HealthBucharestRomania
  5. 5.State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research InstituteCAASLanzhouPeople’s Republic of China

Personalised recommendations