Experimental and Applied Acarology

, Volume 50, Issue 3, pp 269–279 | Cite as

Brood cell size of Apis mellifera modifies the reproductive behavior of Varroa destructor

  • Matías Maggi
  • Natalia Damiani
  • Sergio Ruffinengo
  • David De Jong
  • Judith Principal
  • Martín Eguaras


We undertook a field study to determine whether comb cell size affects the reproductive behavior of Varroa destructor under natural conditions. We examined the effect of brood cell width on the reproductive behavior of V. destructor in honey bee colonies, under natural conditions. Drone and worker brood combs were sampled from 11 colonies of Apis mellifera. A Pearson correlation test and a Tukey test were used to determine whether mite reproduction rate varied with brood cell width. Generalized additive model analysis showed that infestation rate increased positively and linearly with the width of worker and drone cells. The reproduction rate for viable mother mites was 0.96 viable female descendants per original invading female. No significant correlation was observed between brood cell width and number of offspring of V. destructor. Infertile mother mites were more frequent in narrower brood cells.


Varroa destructor Apis mellifera Brood cell width Reproductive behavior Foundress mother mites Reproduction rate 



The authors thank the UNMDP and CONICET for financial support. This research was supported by an ANPCyT, Pict 07 grant to M. E. We thank Dr. Norma Sardella for her criticisms and suggestions and to Dr. Elena Ieno for her help in the statistical analysis.


  1. Alberti G, Hanel H (1986) Fine structure of the genital system in the bee parasite, Varroa jacobsoni (Gamasida: Dermanyssina) with remarks on spermiogenesis, spermatozoa and capacitation. Exp Appl Acarol 2:63–104CrossRefGoogle Scholar
  2. Anderson R, Gordon D (1982) Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85:373–398CrossRefPubMedGoogle Scholar
  3. Anderson D, Trueman J (2000) Varroa jacobsoni is more than one species. Exp Appl Acarol 24:165–189CrossRefPubMedGoogle Scholar
  4. Boot W, Calis J, Beetsma J (1991) Invasion of Varroa mites into honeybee brood cells; when do brood cells attract Varroa mites? Proc Exp Appl Entomol 2:154–156Google Scholar
  5. Boot W, Sisselaar D, Calis J, Beetsma J (1994) Factors affecting invasion of Varroa mites into honey bee brood cells. Bull Entomol Res 84:3–10CrossRefGoogle Scholar
  6. Boot W, Driessen R, Calis J, Beetsma J (1995) Further observations on the correlation between attractiveness of honey bee brood cells to Varroa jacobsoni and the distance from larva to cell rim. Entomol Exp Appl 76:223–232CrossRefGoogle Scholar
  7. Brower J, Zar J (1977) Field and laboratory methods for general ecology. Wm. C. Brown Company Publishers, IowaGoogle Scholar
  8. Calderone NW, Lin S (2001) Behavioural responses of Varroa destructor (Acari: Varroidae) to extracts of larvae, cocoons and brood food of worker and drone honey bees, Apis mellifera (Hymenoptera: Apidae). Physiol Entomol 26:341–350CrossRefGoogle Scholar
  9. Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9:129–136CrossRefPubMedGoogle Scholar
  10. Corrêa-Marques MH, De Jong D (1998) Uncapping of worker bee brood, a component of the hygienic behavior of Africanized honey bees against the mite Varroa jacobsoni Oudemans. Apidologie 29:283–289CrossRefGoogle Scholar
  11. Corrêa-Marques MH, De Jong D, Rosenkranz P, Gonçalves LS (2002) Varroa-tolerant Italian honey bees introduced from Brazil were not more efficient in defending themselves against the mite Varroa destructor than Carniolan bees in Germany. Genet Mol Res 1:153–158PubMedGoogle Scholar
  12. Corrêa-Marques MH, Medina LM, Martin SJ, De Jong D (2003) Comparing data on the reproduction of Varroa destructor. Genet Mol Res 2:1–6PubMedGoogle Scholar
  13. De Jong D (1981) Effect of queen cell construction on the rate of invasion of honeybee brood cells by Varroa jacobsoni. J Apic Res 20:254–257Google Scholar
  14. De Jong D (2005) Workshop sobre Control de la Varroosis en Climas Subtropicales. 27 y 28 de junio, Salta ArgentinaGoogle Scholar
  15. De Jong D, Morse RA (1988) Utilization of raised brood cells of the honey bee, Apis mellifera (Hymenoptera: Apidae), by the mite Varroa jacobsoni (Acarina: Varroidae). Entomol Gen 14:103–106Google Scholar
  16. De Jong D, De Jong PH, Gonçalves LS (1982a) Weight loss and other damage to developing worker honeybees from infestation with Varroa jacobsoni. J Apic Res 21:165–167Google Scholar
  17. De Jong D, Morse RA, Eickwort GE (1982b) Mites pests of honey bees. Annu Rev Entomol 27:229–252CrossRefGoogle Scholar
  18. De Jong D, Gonçalves LS, Morse RA (1984) Dependence on climate of the virulence of Varroa jacobsoni. Bee World 65:117–121Google Scholar
  19. De Ruijter A, Calis J (1988) Distribution of Varroa jacobsoni female mites in honey bee worker brood cells of normal and manipulated depth (Acarina: Varroidae). Entomol Gen 14:107–109Google Scholar
  20. Donzé G, Guerin MP (1994) Behavioral attributes and parental care of Varroa mites parasitizing honeybee brood. Behav Ecol Sociobiol 34:305–319CrossRefGoogle Scholar
  21. Donzé G, Hermann M, Bachofen B, Guerin M (1996) Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. Ecol Entomol 21:17–26CrossRefGoogle Scholar
  22. Eguaras M, Marcangeli J, Fernandez N (1994) Influence of the parasitic intensity on Varroa jacobsoni Oud. reproduction. J Apic Res 33:155–159Google Scholar
  23. Floris I (1991) Dispersion indices and sampling plans for the honeybee (Apis mellifera ligustica Spin.) mite Varroa jacobsoni Oud. Apicoltura 7:161–170Google Scholar
  24. Fuchs S (1988) The distribution of Varroa jacobsoni on honeybee brood combs and within brood cells as a consequence of fluctuation rates. In: Cavalloro R (ed) European research on varroatosis control: proceedings of a meeting of the EC expert′s group, Bad Homburg, 15–17 October 1986. Balkema, Rotterdam, pp 73–76Google Scholar
  25. Fuchs S, Langenbach K (1989) Multiple infestation of Apis mellifera L. brood cells and reproduction of Varroa jacobsoni Oud. Apidologie 20:117–130CrossRefGoogle Scholar
  26. Goetz B, Koeniger N (1993) The distance between larva and cell opening triggers brood cell invasion by Varroa jacobsoni. Apidologie 24:67–72CrossRefGoogle Scholar
  27. Harris J, Harbo J (1999) Low sperm counts and reduced fecundity of mites in colonies of honey bees (Hymenoptera: Apidae) resistant to Varroa jacobsoni (Mesostigmata: Varroidae). J Econ Entomol 92(1):83–90Google Scholar
  28. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  29. Ifantidis MD (1984) Parametres of the population dynamics of the Varroa mite on honeybees. J Apic Res 23:227–233Google Scholar
  30. Ifantidis MD (1988) Some aspects of the process of Varroa jacobsoni mite entrance into honey bee (Apis mellifera) brood cells. Apidologie 19:387–396CrossRefGoogle Scholar
  31. Kuenen L, Calderone N (2000) Varroa mite infestation in elevated honey bee brood cells: effect of context and caste. J Insect Behav 13(2):201–213CrossRefGoogle Scholar
  32. Le Conte Y, Arnold G, Trouiller J, Masson C, Chappe B, Ourisson G (1989) Attraction of the parasitic mite Varroa to the drone larvae of honey bees by simple aliphatic esters. Science 245:638–639CrossRefPubMedGoogle Scholar
  33. Le Conte Y, Arnold G, Desenfant P (1990) Influence of the brood temperature and hygrometry variations on the development of the honey bee ectoparasite Varroa jacobsoni. Environ Entomol 19:1780–1785Google Scholar
  34. Martin S (1995) Ontogenesis of the mite Varroa jacobsoni Oud. In drone brood of the honeybee Apis mellifera L. under natural conditions. Exp Appl Acarol 19:199–210CrossRefGoogle Scholar
  35. Martin S, Kryger P (2002) Reproduction of Varroa destructor in South African honey bees: does cell space influence Varroa male survivorship? Apidologie 33:51–61CrossRefGoogle Scholar
  36. Message D, Gonçalves LS (1995) Effect of the size of worker brood cells of africanized honey bees on infestation and reproduction of the ectoparasitic mite Varroa jacobsoni Oud. Apidologie 26:381–386CrossRefGoogle Scholar
  37. Moretto G, Gonçalves LS, De Jong D (1991) The effects of climate and bee race on Varroa jacobsoni Oud. infestations in Brazil. Apidologie 22:197–203CrossRefGoogle Scholar
  38. Nannelli R (1986) Caratteri morfologici essenzialli per una rapida identificazione dei diversi stadi di Varroa jacobsoni Oud. Apicoltura 2:95–119Google Scholar
  39. Nazzi F, Milani N, Della Vedova G (2004) A semiochemical from larval food influences the entrance of Varroa destructor into brood cells. Apidologie 35:403–410CrossRefGoogle Scholar
  40. Piccirillo G, De Jong D (2003) The influence of brood comb cell size on the reproductive behavior of the ectoparasitic mite Varroa destructor in Africanized honey bee colonies. Genet Mol Res 2:36–42PubMedGoogle Scholar
  41. Piccirillo G, De Jong D (2004) Old honey bee brood combs are more infested by the mite Varroa destructor than are new brood combs. Apidologie 35:359–364CrossRefGoogle Scholar
  42. Poulin R (1998) Evolutionary ecology of parasites: from individuals to communities. Chapman and Hall, LondonGoogle Scholar
  43. Rickli M, Diehl PA, Guerin PM (1994) Cuticle alkanes of honeybee larvae mediate arrestment of bee parasite Varroa jacobsoni. J Chem Ecol 20:2437–2453CrossRefGoogle Scholar
  44. Ritter W, De Jong D (1984) Reproduction of Varroa jacobsoni Oud. in Europe, the middle East and tropical South America. Z Angew Entomol 98:55–57Google Scholar
  45. Rodriguez J, Wade G, Claude F (1961) The nutrition of Macrocheles muscaedomesticae (Acarina: Macrochelidae) in relation to its predatory action on the house fly egg. Ann Entomol Soc Am 54(6):782–788Google Scholar
  46. Schulz A (1984) Reproduktion und Populationsentwicklung der parasitischen Milbe Varroa jacobsoni Oud. in Abhfingigkeit vom Brutzyklus ihres Wirts Apis mellifera L. Apidologie 15:401–420CrossRefGoogle Scholar
  47. Steiner J (1988) Sex discrimination based on external structures in nymphal and adult Varroa jacobsoni mites (Acarina: Varroidae). Entomol Gen 14:133–138Google Scholar
  48. Steiner J, Diehl PA, Vlimant M (1995) Vitellogenesis in Varroa jacobsoni, a parasite of honey bees. Exp Appl Acarol 19:411–422CrossRefGoogle Scholar
  49. Taylor M, Goodwin R, McBrydie H, Cox H (2008) The effect of honey bee worker brood cell size on Varroa destructor infestation and reproduction. J Apic Res/Bee World 47(4):243–246Google Scholar
  50. Tewarson NC (1983) Nutrition and reproduction in the ectoparasitic honey bee (Apis sp.) mite, Varroa jacobsoni. Thesis, Eberhard-Karls-University, Tübingen, GermanyGoogle Scholar
  51. Zuur A, Ieno E, Smith G (2007) Analysing ecological data. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Matías Maggi
    • 1
    • 2
  • Natalia Damiani
    • 1
    • 2
  • Sergio Ruffinengo
    • 3
  • David De Jong
    • 4
  • Judith Principal
    • 5
  • Martín Eguaras
    • 1
    • 2
  1. 1.Laboratorio de Artrópodos, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.CONICET, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Cátedra de Apicultura, Facultad de Ciencias AgrariasUniversidad Nacional de Mar del PlataBalcarceArgentina
  4. 4.Departamento de Genética, Faculdade de MedicinaUniversidade de São Paulo (USP)Ribeirão PretoBrazil
  5. 5.Estación de Apicultura. Decanato de VeterinariaUniversidad Centroccidental “Lisandro Alvarado”LaraVenezuela

Personalised recommendations