Advertisement

Experimental and Applied Acarology

, Volume 49, Issue 1–2, pp 45–84 | Cite as

Carcases and mites

  • Henk R. Braig
  • M. Alejandra Perotti
Article

Abstract

Mites are involved in the decomposition of animal carcases and human corpses at every stage. From initial decay at the fresh stage until dry decomposition at the skeletal stage, a huge diversity of Acari, including members of the Mesostigmata, Prostigmata, Astigmata, Endeostigmata, Oribatida and Ixodida, are an integral part of the constantly changing food webs on, in and beneath the carrion. During the desiccation stage in wave 6 of Mégnin’s system, mites can become the dominant fauna on the decomposing body. Under conditions unfavourable for the colonisation of insects, such as concealment, low temperature or mummification, mites might become the most important or even the only arthropods on a dead body. Some mite species will be represented by a few specimens, whereas others might build up in numbers to several million individuals. Astigmata are most prominent in numbers and Mesostigmata in diversity. More than 100 mite species and over 60 mite families were collected from animal carcases, and around 75 species and over 20 families from human corpses.

Keywords

Carrion Carcass Corpse Cadaver Animal decomposition Necrophagy Necrophagia Succession Post mortem interval 

Notes

Acknowledgments

The authors appreciate the funding of research on forensic acarology by the Leverhulme Trust. Additional information was kindly provided by M. Lee Goff, Paola Magni, Marta I. Saloña-Bordas and Francis D. Feugang Youmessi. The authors like to thank Mariló Moraza and Barry M. OConnor for advice and reviewing an earlier version of the manuscript.

References

  1. Abell DH, Wasti SS, Hartmann GC (1982) Saprophagous arthropod fauna associated with turtle carrion. Appl Entomol Zool 17:301–307Google Scholar
  2. Anderson GS, Vanlaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625Google Scholar
  3. Anderson GS, Hobischak N, Samborski C et al (2002) Insect succession on carrion in the Edmonton, Alberta, region of Canada Technical Report TR-04-2002. Canadian Police Research Centre, Ottawa (Ontario), CanadaGoogle Scholar
  4. Arnaldos MI, Romera E, Presa JJ et al (2004) Studies on seasonal arthropod succession on carrion in the southeastern Iberian Peninsula. Int J Legal Med 118:197–205PubMedCrossRefGoogle Scholar
  5. Arnaldos Sanabria MI (2000) Estudio de la fauna sarcosapprófaga de la Región de Murcia. Su aplicación a la mediciona legal [Studies on the sarcosaphrophagous fauna in the Region of Murcia; its application in legal medicine]. Departamento de Biología Animal. Universidad de Murcia, MurciaGoogle Scholar
  6. Athias-Binche F (1994) La Phorésie chez les Acariens—Aspects Adaptatifs et Evolutifs [Phoresy in acarina—adaptive and evolutionary aspects]. Editions du Castillet, PerpignanGoogle Scholar
  7. Ashford RW, Crewe W (2003) The parasites of Homo sapiens. An annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis, LondonGoogle Scholar
  8. Avila FW, Goff ML (1998) Arthropod succession patterns onto burnt carrion in two contrasting habitats in the Hawaiian islands. J Forensic Sci 43:581–586PubMedGoogle Scholar
  9. Baker AS (1990) Two new species of Lardoglyphus Oudemans (Acari: Lardoglyphidae) found in the gut contents of human mummies. J Stored Prod Res 26:139–147CrossRefGoogle Scholar
  10. Baker AS (2009) Acari in archaeology. Exp Appl Acarol 49. doi: 10.1007/s10493-009-9271-1
  11. Beesley WN (1998) Scabies and other mite infestations. In: Palmer SR, Lord Soulsby EJL, Simpson DIH (eds) Zoonoses. Oxford University Press, Oxford, pp 859–872Google Scholar
  12. Behan-Pelletier V, Bissett B (1994) Oribatida of Canadian peatlands. Mem Entomol Soc Can 169:73–88Google Scholar
  13. Bergeret M (1855) Infanticide. Momification naturelle du cadavre. Découverte du cadavre d’un enfant nouveau-né dans une cheminée où il s’était momifié. Détermination de l’époque de la naissance par la présence de nymphes et de larves d’insectes dans le cadavre et par l’étude de leurs métamorphoses [Infanticide. Natural mummification of the corpse. A corpse of a new-born child discovered in a chimney where it had been mummified. Determination of the time of the birth by the presence of nymphs and larvae of insects in the corpse and by the study of their metamorphoses]. Ann Hyg Publ Méd Lég 4(série):442–452Google Scholar
  14. Bianchini G (1929) Contributo pratico e sperimentale allo studio della fauna cadaverica [An applied and experimental contribution to the study of the cadervous fauna]. Atti Accad Fisiocrit Siena 4(serie 10):97–106Google Scholar
  15. Blackith RE, Blackith RM (1990) Insect infestations of small corpses. J Nat Hist 24:699–709CrossRefGoogle Scholar
  16. Blackman S (1997) Experimental evidence that the mite Poecilochirus davydovae (Mesostigmata: Parasitidae) eats the eggs of its beetle host. J Zool 242:63–67CrossRefGoogle Scholar
  17. Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5:1–12CrossRefGoogle Scholar
  18. Bourel B, Tournel G, Hédouin V et al (2004) Entomofauna of buried bodies in northern France. Int J Legal Med 118:215–220PubMedCrossRefGoogle Scholar
  19. Braack LEO (1986) Arthropods associated with carcasses in the northern Kruger national park. S Afr J Wildl Res 16:91–98Google Scholar
  20. Braack LEO (1987) Community dynamics of carrion-attendant arthropods in tropical African woodland. Oecologia 72:402–409CrossRefGoogle Scholar
  21. Bregetova NG, Koroleva EV (1960) The macrochelid mites (Gamasoidea, Macrochelidae) in the USSR. Parazitol Sb 19:32–154Google Scholar
  22. Brouardel P (1879) De la détermination de l’époque de la naissance et de la mort d’un nouveau-née, faite à l’aide de la présence des acares et des chenilles d’aglosses dans cadavre momifié [Determination of the time of birth and of death of a new-born child, made using the presence of mites and Aglossa caterpillars on the mummified corpse]. Ann Hyg Publ Méd Lég 2(série 3):153–158Google Scholar
  23. Brown JM, Wilson DS (1994) Poecilochirus carabi: behavioral and life-history adaptations to different hosts and the consequences of geographical shifts in host communities. In: Houck MA (ed) Mites. Ecological and evolutionary analyses of life history patterns. Chapman and Hall, New York, pp 1–22Google Scholar
  24. Castillo Miralbes M (2002) Estudio de la entomofauna asociada a cadáveres en el Alto Aragón (España) [Study of the entomofauna associated with corpses in the region of Alto Aragón (Spain)]. Sociedad Entomológica Aragonesa, ZaragozaGoogle Scholar
  25. Chapman RF, Sankey JHP (1955) The larger invertebrate fauna of three rabbit carcasses. J Anim Ecol 24:395–402CrossRefGoogle Scholar
  26. Coe M (1978) The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. J Arid Environ 1:71–86Google Scholar
  27. Collins M (1970) Studies on the decomposition of carrion and its relationship with its surrounding ecosystem. PhD Thesis, Department of Zoology, University of Reading, Reading, EnglandGoogle Scholar
  28. Colloff MJ (2009) Dust mites. Springer, DordrechtGoogle Scholar
  29. Cornaby BW (1974) Carrion reduction by animals in contrasting tropical habitats. Biotropica 6:51–63CrossRefGoogle Scholar
  30. Dadour IR, Harvey ML (2008) The role of invertebrates in terrestrial decomposition: forensic applications. In: Tibbett M, Carter DC (eds) Soil analysis in forensic taphonomy. CRC Press, Boca Raton, pp 109–122Google Scholar
  31. Dahl F (1896) Vergleichende Untersuchungen über die Lebensweise wirbelloser Aasfresser [Comperative studies on the ecology of invertebrate carrion feeders]. Sitzungsb Königl Preuss Akad Wiss Berlin 1:17–30Google Scholar
  32. Davis JB, Goff ML (2000) Decomposition patterns in terrestrial and interdidal habitats on Oahu Island and Coconut Island, Hawaii. J Forensic Sci 45:836–842PubMedGoogle Scholar
  33. de Candanedo Guerra RdMSN, Gazeta GS, Amorim M et al (2003) Ecological analysis of Acari recovered from coprolites from archaeological site of Northeast Brazil. Mem Inst Oswaldo Cruz 98(Suppl. 1):181–190Google Scholar
  34. De Jong GD, Chadwick JW (1999) Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in Colorado, USA. J Med Entomol 36:833–845PubMedGoogle Scholar
  35. De Jong GD, Hoback WW (2006) Effect of investigator disturbance in experimental forensic entomology: succession and community composition. Med Vet Entomol 20:248–258PubMedCrossRefGoogle Scholar
  36. Desch CE (2009) Human hair follicle mites and forensic acarology. Exp Appl Acarol 49. doi: 10.1007/s10493-009-9272-0
  37. Early M, Goff ML (1986) Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian islands, USA. J Med Entomol 23:520–531PubMedGoogle Scholar
  38. Easton AM, Smith KGV (1970) The entomology of the cadaver. Med Sci Law 10:208–215PubMedGoogle Scholar
  39. Feugang Youmessi FD, Djiéto-Lordon C, Gaudry E et al (2008) Contribution to the research of the entomological indicators of corpse dating: case of Rattus rattus (Linnaeus, var WISTAR) in Yaounde (Cameroon) EAFE Meeting 2008, Kolymbari, GreeceGoogle Scholar
  40. Forbes G (1942) The brown house moth as an agent in the destruction of mummified human remains. Police J Lond 15:141–148Google Scholar
  41. Fourman KL (1936) Kleintierwelt, Kleinklima, und Mikroklima in Beziehung zur Kennzeichnung des Forstlichen Standorts und der Bestandsabfallzersetzung auf bodenbiologischer Grundlage [Microfauna, local climate, and microclimate in relationship with the characterisation of forest location and decomposition of forest waste on a soil-biological basis]. Mitt Forstwirt Forstwiss 7:596–615Google Scholar
  42. Frost CL, Amendt J, Braig HR, Perotti MA (2009) Indoor arthropods of forensic importance. In: Amendt J, Goff ML, Campobasso CP et al (eds) Current concepts in forensic entomology. Springer, DordrechtGoogle Scholar
  43. Fugassa MH, Sardella NH, Denegri GM (2007) Paleoparasitological analysis of a raptor pellet from Southern Patagonia. J Parasitol 93:421–422PubMedCrossRefGoogle Scholar
  44. Fuller ME (1934) The insect inhabitants of carrion: a study in animal ecology. Council of Science and Industry Research in Australia, CanberraGoogle Scholar
  45. Gaudry E (2002) Eight squadrons for one target: the fauna of cadaver described by P. Mégnin Proceedings of the First European Forensic Entomology Seminar, Rosny sous Bois, France, pp 23–28Google Scholar
  46. Gill GJ (2005) Decomposition and arthropod succession on above ground pig carrion in rural Manitoba Technical Report TR-06-2005. Canadian Police Research Centre, Ottawa (Ontario)Google Scholar
  47. Gmeiner F (1908) Demodex folliculorum des Menschen und der Tiere [Demodex folliculorum of humans and animals]. Arch Dermatol Syph 92:25–96CrossRefGoogle Scholar
  48. Goff ML, Odom CB (1987) Forensic entomology in the Hawaiian Islands: three case studies. Am J Forensic Med Pathol 8:45–50PubMedGoogle Scholar
  49. Goff ML (1989) Gamasid mites as potential indicators of postmortem interval. In: Channabasavanna GP, Viraktamath CA (eds) Progress in Acarology, vol 1. Oxford & IBH Publishing, New Delhi, pp 443–450Google Scholar
  50. Goff ML (1991) Use of acari in establishing a postmortem interval in a homicide case on the island of Oahu, Hawaii. In: Dusbábek E, Bukva V (eds) Modern Acarology, vol 1. SPB Academic Publishing, The Hague, pp 439–442Google Scholar
  51. Goff ML (1993) Estimation of postmortem interval using arthropod development and successional patterns. Forensic Sci Rev 5:81–94Google Scholar
  52. Goff ML, García García MD, Arnaldos Sanabria MI (2004) Entomología cadavérica: Fundamentos y aplicación. Referencia a la entomología española [Forensic entomology: basics and applications. A reference to Spanish entomology]. In: Gisbert Calabuig JA, Villanueva Cañadas E et al (eds) Tratado de Medicina Legal y Toxicología [Treatise on legal medicine and toxicology]. Masson, Barcelona, pp 253–273Google Scholar
  53. Goff ML (2009) Early post-mortem changes and stages of decomposition in exposed cadavers. Exp Appl Acarol 49. doi: 10.1007/s10493-009-9284-9
  54. Graells M (1886) Entomologia judicial [Forensic entomology]. Rev Progr Cienc Exact Fís Nat Madrid 21:458–471Google Scholar
  55. Grassberger M, Frank C (2004) Initial study of arthropod succession on pig carrion in a central European urban habitat. J Med Entomol 41:511–523PubMedGoogle Scholar
  56. Gwiazdowicz DJ, Klemt J (2004) Mesostigmatic mites (Acari, Gamasida) in selected microhabitats of the Biebrza National Park (NE Poland). Biol Lett 41:11–19Google Scholar
  57. Halliday RB (2000) The Australian species of Macrocheles (Acarina : Mesostigmata). Invertebr Taxon 14:273–326CrossRefGoogle Scholar
  58. Haskell NH, Hall RD, Cervenka VJ (1997) On the body: insect’s life stage presence and their postmortem artefacts. In: Hagland WD, Sorg MH et al (eds) Forensic taphonomy–the post mortem fate of human remains. CRC Press, Boca Raton, pp 415–467Google Scholar
  59. Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240PubMedCrossRefGoogle Scholar
  60. Hidalgo-Argüello MR, Díez Baños N, Fregeneda Grandes J et al (2003) Parasitological analysis of Leonese royalty from Collegiate-Basilica of St. Isidoro, Léon (Spain): Helminths, protozoa, and mites. J Parasitol 89:738–743PubMedCrossRefGoogle Scholar
  61. Hobischak NR, Anderson GS (2002) Time of submergence using aquatic invertebrate succession and decompositional changes. J Forensic Sci 47:143–151Google Scholar
  62. Horenstein MB, Arnaldos MI, Rosso B et al (2005) Estudio preliminar de la comunidad sarcosaprófaga en Córdoba (Argentina): aplicación a la entomología forense [Preliminary study of the sarcosaprophytic community in Cordoba (Argentina): applied to forensic entomology]. An Biol 27:191–201Google Scholar
  63. Hunziker H (1919) Über die Befunde bei Leichenausgrabungen auf den Kirchhöfen Basels. Unter besonderer Berücksichtung der Fauna und Flora der Gräber [About the findings during excavations of corpses on the cemeteries of Basel, especially of the fauna and flora of graves]. Frankf Z Pathol 22:147–207Google Scholar
  64. Hyatt KH, Emberson RM (1988) A review of the Macrochelidae (Acari: Mestostigmata) of the British Isles. Bull Br Mus (Natl Hist) Zool 54:63–125Google Scholar
  65. Iloba BN, Fawole SO (2006) Comparative study of arthropod fauna on exposed arrions across the vertebrate classes. Int J Biomed Health Sci 2:51–65Google Scholar
  66. Johnson MD (1975) Seasonal and microseral variation in the insect populations on carrion. Am Midl Nat 93:79–90CrossRefGoogle Scholar
  67. Johnston W, Villeneuve G (1897) On the medico-legal application of entomology. Montr Med J 26:81–89Google Scholar
  68. Kelly JA (2006) The influence of clothing, wrapping and physical trauma on carcass decomposition and arthropod succession in central South Africa. PhD Thesis, Department of Zoology and Entomology, University of the Free State, Bloemfontein, South AfricaGoogle Scholar
  69. Kliks MM (1988) Paleoparasitological analyses of fecal material from Amerindian (or New World) mummies: evaluation of saprophytic arthropod remains. Paleopathol Newsl 64:7–11PubMedGoogle Scholar
  70. Kneidel KA (1984) Competition and disturbance in communities of carrion-breeding Diptera. J Anim Ecol 53:849–865CrossRefGoogle Scholar
  71. Krantz GW, Whitaker JO Jr (1988) Mites of the genus Macrocheles (Acari: Macrochelidae) associated with small mammals in North America. Acarologia 29:225–259Google Scholar
  72. Krantz GW, Platnick NI (1995) On Brucharachne, the spider that wasn’t (Arachnida, Acari, Dermanyssoidea). Am Mus Novit 3151:1–8Google Scholar
  73. Kühnelt W (1950) Bodenbiologie [Soil biology]. Herold, ViennaGoogle Scholar
  74. Lecha-Marzo A (1917) Tratado de autopsias y embalsamamientos [Treatise on autopsy and embalming]. Los Progresos de la Clínica, Madrid, pp 79–90Google Scholar
  75. Leclercq M (1978) Entomologie et Médecine Légale: Datation de la Mort [Entomology and forensic medicine: dating the time of death]. Masson, ParisGoogle Scholar
  76. Leclercq M (2002) L’entomologie légale en Belgique depuis 1947 [Forensic entomology in Belgium since 1947] Proceedings of the First European Forensic Entomology Seminar, Rosny sous Bois, France, pp 8–12Google Scholar
  77. Leclercq M, Verstraeten C (1988a) Entomologie et médicine légale. Datation de la mort: insectes et autres arthropodes trouvés sur les cadavres humains [Entomology and forensic medicine, determination of the time of death: insects and other arthropods on human cadavers]. Bull Ann Soc R Belge Entomol 124:311–317Google Scholar
  78. Leclercq M, Verstraeten C (1988b) Entomologie et médecine légale. Datation de la mort. Acariens trouvés sur des cadavres humains [Entomology and forensic medicine. Determination of the time of death. Acari found on human cadavers]. Bull Ann Soc R Belge Entomol 124:195–200Google Scholar
  79. Leclercq M, Verstraeten C (1992) Eboueurs entomologiques bénévoles dans les écosystèmes terrestres: observation inédite [Voluntary entomological street sweepers in the terrestrial ecosystems: a new observation]. Notes Faun Gembloux 25:17–22Google Scholar
  80. Leclercq M, Verstraeten C (1993) Entomologie et médecine légale. L’entomofaune des cadavres humains: sa succession par son interprétation, ses résultats, ses perspectives [Entomology and forensic medicine. The entomofauna of human corpses: its succession and interpretation, its results, its prospects]. J Med Leg Droit Med 36:205–222Google Scholar
  81. Leclerq M (1969) Entomological parasitology: the relations between entomology and the medical sciences. Pergamon, OxfordGoogle Scholar
  82. Leles de Souza D, de Maria Seabra Nogueira de Candanedo Guerra R, Mendonça de Souza S et al (2006) Acari found in a mummy bundle from the Chillon River Valley, Peru. Paleopathol Newsl 136:11–16Google Scholar
  83. Lichtenstein J, Moitessier A, Jaumes A (1885) Un nouveau cas d’application de l’entomologie à la médecine légale [A new case of the application of entomology in legal medicine]. Ann Hyg Publ Méd Lég 13(série 3):121–127Google Scholar
  84. Lord WD, Burger JF (1984a) Arthropods associated with harbor seal (Phoca vitulina) carcasses stranded on islands along the New England Coast. Int J Entomol 26:282–285Google Scholar
  85. Lord WD, Burger JF (1984b) Arthropods associated with herring gull (Larus argentatus) and great black-backed gull (Larus marinus) carrion on islands in the Gulf of Maine. Environ Entomol 13:1261–1268Google Scholar
  86. Lord WD (1990) Case histories of the use of insects in investigations. In: Catts EP, Haskell NH (eds) Entomology & death: a procedural guide. Joyce’s Print Shop, Clemson, pp 9–37Google Scholar
  87. Mašán P (1993) Mites (Acarina) associated with species of Trox (Coleoptera: Scarabaeidae). Eur J Entomol 90:359–364Google Scholar
  88. Magni P, Ghizzoni O, Linarello P et al (2008) The man in the farm house—effective support of entomotoxicological examinations to identify causes of death EAFE Meeting 2008, Kolymbari, GreeceGoogle Scholar
  89. Mégnin P (1887) La faune des tombeaux [The fauna of graves]. C R Hebd Acad Sci 105:948–951Google Scholar
  90. Mégnin P (1894) La Faune des Cadavres. Application de l’Entomologie à la Médecine Légale [The fauna of corpses. Application of entomology to forensic medicine]. G. Masson and Gauthier-Villars et Fils, ParisGoogle Scholar
  91. Mégnin P (1895) La faune des cadavres [The fauna of carcasses]. Ann Hyg Publ Méd Lég série 3(33):64–67Google Scholar
  92. Mégnin P (1898) Les parasites de la mort. Une cause peu connue de la momification des cadavres [Parasites of death. A little known cause of the mummification of the corpses]. Arch Parasitol 1:39–43Google Scholar
  93. Mendonça de Souza SMF, Reinhard KJ, Lessa A (2008) Cranial deformation as the cause of death for a child from the Chillon River Valley, Peru. Chungará 40:41–53Google Scholar
  94. Merritt RW, Snider R, de Jong JL et al (2007) Collembola of the grave: a cold case history involving arthropods 28 years after death. J Forensic Sci 52:1359–1361PubMedGoogle Scholar
  95. Michelsen V (1983) Thyreophora anthropophaga, an extinct bone skipper rediscovered in Kashmir, India (Diptera, Piophilidae, Thyreophorina). Entomol Scand 14:411–414Google Scholar
  96. Motter MG (1898) A contribution to the study of the fauna of the grave. A study of on hundred and fifty disinterments, with some additional observations. J N Y Entomol Soc 6:201–233+Google Scholar
  97. Nabagło L (1973) Participation of invertebrates in decomposition of rodent carcasses in forest ecosystems. Ekol Polska 21:251–270Google Scholar
  98. OConnor BM (2009) Astigmatid mites (Acari: Sarcoptiformes) of forensic interest. Exp Appl Acarol 49. doi: 10.1007/s10493-009-9270-2
  99. Parker JC, Holliman RB (1971) Observations on parasites of gray squirrels during the 1968 emigration in North Carolina. J Mammal 52:437–441PubMedCrossRefGoogle Scholar
  100. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602CrossRefGoogle Scholar
  101. Payne JA, Crossley DAJ (1966) Animal species associated with pig carrion Oak Ridge. National Laboratory Technical Memorandum, Oak RidgeGoogle Scholar
  102. Payne JA, King EW, Beinhart G (1968) Arthropod succession and decomposition of buried pigs. Nature 219:1180–1181PubMedCrossRefGoogle Scholar
  103. Payne JA, King EW (1972) Insect succession and decomposition of pig carcasses in water. J Georgia Entomol Soc 34:153–162Google Scholar
  104. Pérez SP, Duque P, Wolff M (2005) Successional behavior and occurrence matrix of carrion-associated arthropods in the urban area of Medellín, Colombia. J Forensic Sci 50:448–454PubMedCrossRefGoogle Scholar
  105. Perotti MA (2009) Mégnin re-analysed: the case of the newborn baby girl, Paris, 1878. Exp Appl Acarol 49. doi: 10.1007/s10493-009-9279-6
  106. Perotti MA, Braig HR (2009a) Acarology in criminolegal investigations: the human acarofauna during life and death. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. Taylor & Francis, Boca Raton, pp 637–649Google Scholar
  107. Perotti MA, Braig HR (2009b) Phoretic mites associated with animal and human decomposition. Exp Appl Acarol 49. doi: 10.1007/s10493-009-9280-0
  108. Perotti MA, Braig HR, Goff ML (2009a) Phoretic mites and carcasses. In: Amendt J, Goff ML, Campobasso CP et al (eds) Current concepts in forensic entomology. Springer, DordrechtGoogle Scholar
  109. Perotti MA, Goff ML, Baker AS et al (2009b) Forensic acarology, an introduction. Exp Appl Acarol 49 (in press)Google Scholar
  110. Pont AC, Matile L (1980) Découverte de quelques insectes de J.-P. Mégnin; identité d’Ophyra cadaverina Mégnin (1894) (Diptera, Muscidae) [Discovery of several insects of J.-P. Mégnin; identity of Ophyra cadaverina Mégnin (1894) (Diptera, Muscidae)]. Bull Soc entomol France 85:41–43Google Scholar
  111. Porta CF (1929) Contributo allo studio dei fenomeni cadaverici: L’azione della microfauna cadaverica terrestre nella decomposizione del cadavere [Contribution to the study of cadaveral phenomina: the behaviour of the terrestrial microfauna of cadavers during the decomposition of cadavers]. Arch Antropol Crim Psich Med Leg Sci Aff 59:1–55Google Scholar
  112. Prichard JG, Kossoris PD, Leibovitch RA et al (1986) Implications of trombiculid mite bites: reports of a case and submission of evidence in a murder trial. J Forensic Sci 31:301–306PubMedGoogle Scholar
  113. Proctor HC (2009) Can freshwater mites act as forensic tools? Exp Appl Acarol 49. doi: 10.1007/s10493-009-9273-z
  114. Putman RJ (1978) The role of carrion-frequenting arthropods in the decay process. Ecol Entomol 3:133–139CrossRefGoogle Scholar
  115. Radovsky FJ (1970) Mites associated with coprolites and mummified human remains in Nevada. Contr Univ Calif Archaeol Res Facility 10:186–190Google Scholar
  116. Ramsay GW, Paterson SE (1977) Mites (Acari) from Rattus species on Raoul Island. N Z J Zool 4:389–392Google Scholar
  117. Reed HB Jr (1958) A study of dog carcass communities in Tennessee, with special reference to the insects. Am Midl Nat 59:213–245CrossRefGoogle Scholar
  118. Richards EN, Goff ML (1997) Arthropod succession on exposed carrion in three contrasting tropical habitats on Hawaii Island, Hawaii. J Med Entomol 34:328–339PubMedGoogle Scholar
  119. Ríos T (1902a) Los insectos y la putrefacción de los cadáveres [Insects and the decomposition of corpses] (I-II). Clín Mod Rev Med Cirug 1:74–80Google Scholar
  120. Ríos T (1902b) Los insectos y la putrefacción de los cadáveres [Insects and the decomposition of corpses] (III-VI). Clín Mod Rev Med Cirug 1:171–180Google Scholar
  121. Rives DV, Barnes HJ (1988) Pseudoparasitism of broiler chicks by mites of the family Uropodidae, genus Fuscuropoda. Avian Dis 32:567–569PubMedCrossRefGoogle Scholar
  122. Russell DJ, Schulz MM, OConnor BM (2004) Mass occurence of astigmatid mites on human remains. Abh Ber Naturkundemus Görlitz 76:51–56Google Scholar
  123. Samšiňák K (1960) Über einige myrmekophile Milben aus der Familie Acaridae [On some myrmecophylic mites in the family Acaridae]. Čas Česk Spol Entomol 57:185–192Google Scholar
  124. Schnell e Schühli G, de Carvalho CJB, Wiegmann BM (2004) Regarding the taxonomic status of Ophyra Robineau-Desvoidy (Diptera: Muscidae): a molecular approach. Zootaxa 712:1–12Google Scholar
  125. Schnell e Schühli G, de Carvalho CJB, Wiegmann BM (2007) Molecular phylogenetics of the Muscidae (Diptera: Calyptratae): new ideas in a congruence context. Invertebr Syst 21:263–278CrossRefGoogle Scholar
  126. Schoenly KG, Shahid SA, Haskell NH et al (2005) Does carcass enrichment alter community structure of predaceous and parasitic arthropods? A second test of the arthropod saturation hypothesis at the anthropology resaerch facility in Knoxville, Tennessee. J Forensic Sci 50:134–142PubMedCrossRefGoogle Scholar
  127. Schönborn W (1963) Vergleichende zoozönotische Untersuchungen an Exkrementen, Kadavern, Hutpilzen und Vogelnestern [Comparative zoocenotic investigations on excrements, carcasses, mushrooms and bird nests]. Biologisches Zentralbl 82:165–184Google Scholar
  128. Schroeder H, Klotzbach H, Oesterhelweg L et al (2002) Larder beetles (Coleoptera, Dermestidae) as an accelerating factor for decomposition of a human corpse. Forensic Sci Int 127:231–236PubMedCrossRefGoogle Scholar
  129. Shalaby OA, deCarvalho LML, Goff ML (2000) Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with soil in a xerophytic habitat on the island of Oahu, Hawaii. J Forensic Sci 45:1267–1273PubMedGoogle Scholar
  130. Smith KGV (1973) Forensic entomology. In: Smith KGV (ed) Insects and other arthropods of medical importance. British Museum (Natural History). London, UK, pp 483–486Google Scholar
  131. Smith KGV (1975) The faunal succession of insects and other invertebrates on a dead fox. Entomol Gaz 26:277–287Google Scholar
  132. Smith KGV (1986) A manual of forensic entomology. British Museum (Natural History), LondonGoogle Scholar
  133. Solarz K (2009) Indoor and dust mites. Exp Appl Acarol 49. doi: 10.1007/s10493-009-9292-9
  134. Strauch C (1912) Die Fauna der Leichen [Fauna of corpses]. Vierteljahrsschr gerichtl Med öffentl Sanitätsw 43:44–49Google Scholar
  135. Strauch C (1928) Beiträge zur natürlichen Mumifikation menschlicher Leichen [Contribution to the natural mummification of human corpses]. Dtsch Z gesamte gerichtl Med 12:259–269CrossRefGoogle Scholar
  136. Tantawi TI, El-Kady EM, Greenberg B et al (1996) Arhropod succession on exposed rabbit carrion in Aexandria, Egypt. J Med Entomol 33:566–580PubMedGoogle Scholar
  137. Turchetto M, Vanin S (2004) Forensic evaluations on a crime case with monospecific necrophagous fly population infected by two parasitoid species. Aggrawal’s Internet J Forensic Med Toxicol 5:12–18Google Scholar
  138. Turner B (2009) Forensic entomology: a template for forensic Acarology? Exp Appl Acarol 49. doi: 10.1007/s10493-009-9274-y
  139. Vance GM, VanDyk JK, Rowley WA (1995) A device for sampling aquatic insects associated with carrion in water. J Forensic Sci 40:479–482Google Scholar
  140. Voigt J (1965) Specific post-mortem changes produced by larder beetles. J Forensic Med 12:76–80PubMedGoogle Scholar
  141. von Niezabitowski ER (1902) Experimentelle beiträge zur Lehre von der Leichenfauna [Experimental contributions to the science of the fauna of corpses]. Vierteljahrsschr gerichtl Med öffentl Sanitätsw 3:44–50Google Scholar
  142. Walker TJ Jr (1957) Ecological studies of the arthropods associated with certain decaying materials in four habitats. Ecology 38:262–276CrossRefGoogle Scholar
  143. Wasti SS (1972) A study of the carrion of the common fowl, Gallus domesticus, in relation to arthropod succession. J Georgia Entomol Soc 7:221–229Google Scholar
  144. Watson EJ, Carlton CE (2003) Spring succession of necrophilous insects on wildlife carcasses in Louisiana. J Med Entomol 40:338–347PubMedCrossRefGoogle Scholar
  145. Watson EJG (2004) Faunal succession of necrophagous insects associated with high-profile wildlife carcasses in Louisiana. PhD Thesis, Department of Entomology, Louisiana State University, Baton Rouge, LA, USAGoogle Scholar
  146. Wilson DS (1983) The effect of population structure on the evolution of mutualism: a field test involving burying beetles and their phoretic mites. Am Nat 121:851870CrossRefGoogle Scholar
  147. Wilson E (1844) Researches into the structure and development of a newly discovered parasitic animalcule of the human skin–the Entozoon folliculorum. Philos Trans R Soc Lond 134:305–319CrossRefGoogle Scholar
  148. Wolff M, Builes A, Zapata G et al (2004) Detection of Parathion (O, O-diethyl O-(4-nitrophenyl) phosphorothioate) by HPLC in insects of forensic importance in Medellín, Colombia. Anil Aggrawal’s Internet J Forensic Med Toxicol 5:6–11Google Scholar
  149. Wyss C, Cherix D (2006) Traité d’entomologie forensique. Les insectes sur la scène de crime [Treatise on forensic entomology. The insects at the crime scene]. Presse polytechniques et universitaires romandes, LausanneGoogle Scholar
  150. Yoder WA (1972) Acarina (Arthropoda: Arachnida) associated with selected Michigan Silphidae (Coleoptera). Michigan State University, East LansingGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Biological SciencesBangor UniversityBangorUK
  2. 2.School of Biological SciencesUniversity of ReadingReadingUK

Personalised recommendations