Incongruent effects of two isolates of Rickettsia conorii on the survival of Rhipicephalus sanguineus ticks

  • M. L. Levin
  • L. Killmaster
  • G. Zemtsova
  • D. Grant
  • K. Y. Mumcuoglu
  • M. E. Eremeeva
  • G. A. Dasch
Article

Abstract

Rickettsia conorii, the etiologic agent of Mediterranean spotted fever is widely distributed in Southern Europe, the Middle East, Africa, India and the Caspian region. In the Mediterranean region, the brown dog tick, Rhipicephalus sanguineus, is the recognized vector of R. conorii. To study tick-pathogen relationships and pathogenesis of infection caused in model animals by the bite of an infected tick, we attempted to establish a laboratory colony of Rh. sanguineus persistently infected with R. conorii. Rhipicephalus sanguineus ticks of North American and Mediterranean origin were exposed to R. conorii isolates of African (R. conorii conorii strain Malish) and Mediterranean (R. conorii israelensis strain ISTT) origin. Feeding of ticks upon infected mice and dogs, intra-hemocoel inoculation, and submersion in suspensions of purified rickettsiae were used to introduce the pathogen into uninfected ticks. Feeding success, molting success and the longevity of molted ticks were measured to assess the effects of R. conorii on the survival of Rh. sanguineus. In concordance with previously published results, Rh. sanguineus larvae and nymphs from both North American and Mediterranean colonies exposed to R. conorii conorii Malish experienced high mortality during feeding and molting or immediately after. The prevalence of infection in surviving ticks did not exceed 5%. On the other hand, exposure to ISTT strain had lesser effect on tick survival and resulted in 35–66% prevalence of infection. Rh. sanguineus of Mediterranean origin were more susceptible to infection with either strain of R. conorii than those from North America. Previous experimental studies had demonstrated transovarial and transstadial transmission of R. conorii in Rh. sanguineus; however, our data suggest that different strains of R. conorii may employ different means of maintenance in nature. The vertebrate host may be a more important reservoir than previously thought, or co-feeding transmission between different generations of ticks may obviate or lessen the requirement for transovarial maintenance of R. conorii.

Keywords

Rickettsia conorii Rickettsia israelensis Rhipicephalus sanguineus Molting success Tick survival Infection 

References

  1. Amaro M, Bacellar F, Franca A (2003) Report of eight cases of fatal and severe Mediterranean spotted fever in Portugal. Ann N Y Acad Sci 990:331–343CrossRefPubMedGoogle Scholar
  2. Bacellar F, Nuncio MS, Rehacek J et al (1991) Rickettsiae and rickettsioses in Portugal. Eur J Epidemiol 7:291–293. doi:10.1007/BF00145680 CrossRefPubMedGoogle Scholar
  3. Bernasconi MV, Casati S, Peter O et al (2002) Rhipicephalus ticks infected with Rickettsia and Coxiella in Southern Switzerland (Canton Ticino). Infect Genet Evol 2:111–120. doi:10.1016/S1567-1348(02)00092-8 CrossRefPubMedGoogle Scholar
  4. Conor A, Bruch A (1910) Une fièvre éruptive observée en Tunisie. Bull Soc Pathol Exot Filiales Paris 8:492–496Google Scholar
  5. Eremeeva ME, Dasch GA, Silverman DJ (2003) Evaluation of a PCR assay for quantitation of Rickettsia rickettsii and closely related spotted fever group rickettsiae. J Clin Microbiol 41:5466–5472. doi:10.1128/JCM.41.12.5466-5472.2003 CrossRefPubMedGoogle Scholar
  6. Feldman-Muhsam B (1952) On the identity of Rhipicephalus sanguineus lat. Bull Res Counc Isr 11:187–194Google Scholar
  7. Ioffe-Uspenskiy I, Mumcuoglu KY, Uspenskiy I et al (1997) Rhipicephalus sanguineus and R. turanicus (Acari:Ixodidae): closely related species with different biological characteristics. J Med Entomol 34:74–81Google Scholar
  8. Jerrells TR, Jarboe DL, Eisemann CS (1986) Cross-reactive lymphocyte responses and protective immunity against other spotted fever group rickettsiae in mice immunized with Rickettsia conorii. Infect Immun 51:832–837PubMedGoogle Scholar
  9. Johns R, Sonenshine DE, Hynes WL (1998) Control of bacterial infections in the hard tick Dermacentor variabilis (Acari: Ixodidae): evidence for the existence of antimicrobial proteins in tick hemolymph. J Med Entomol 35:458–464PubMedGoogle Scholar
  10. Lennette EH, Lennette DA, Lennette ET (1995) Diagnostic procedures for viral, rickettsial, and chlamydial infections. American Public Health Association, Washington, p. 633Google Scholar
  11. Levin ML, Fish D (1999) Reservoir competence of medium-sized mammals for the agent of human granulocytic ehrlichiosis. The 48th Annual Meeting of the American Society of Tropical Medicine and Hygiene, p. 357, American Society of Tropical Medicine and Hygiene, Washington, DC, November. 28–December. 2, 1999Google Scholar
  12. Massung RF, Priestley RA, Levin ML (2004) Transmission route efficacy and kinetics of Anaplasma phagocytophilum infection in the white-footed mouse, Peromyscus leucopus. Vector Borne Zoonotic Dis 4:310–318. doi:10.1089/vbz.2004.4.310 CrossRefPubMedGoogle Scholar
  13. Matsumoto K, Brouqui P, Raoult D et al (2005) Experimental infection models of ticks of the Rhipicephalus sanguineus group with Rickettsia conorii. Vector Borne Zoonotic Dis 5:363–372. doi:10.1089/vbz.2005.5.363 CrossRefPubMedGoogle Scholar
  14. Mumcuoglu KY, Keysary A, Gilead L (2002) Mediterranean spotted fever in Israel: a tick-borne disease. Isr Med Assoc J 4:44–49PubMedGoogle Scholar
  15. Neitz WO, Alexander RA, Mason JH (1941) The transmission of tick-bite fever by the dog tick Rhipicephalus sanguineus. Onderstepoort J Vet Sci Anim Ind 16:9–17Google Scholar
  16. Pegram RG, Clifford CM, Walker JB et al (1987) Clarification of the Rhipicephalus sanguineus group (Acari, Ixodoidea, Ixodidae). I. R. sulcatus Neumann, 1908 and R. turanicus Pomerantsev, 1936. Syst Parasitol 10:3–26. doi:10.1007/BF00009099 CrossRefGoogle Scholar
  17. Peter O, Burgdorfer W, Aeschlimann A et al (1984) Rickettsia conorii isolated from Rhipicephalus sanguineus introduced into Switzerland on a pet dog. Z Parasit 70:265–270. doi:10.1007/BF00942229 CrossRefGoogle Scholar
  18. Péter O, Raoult D, Gilot B (1990) Isolation by a sensitive centrifugation cell culture system of 52 strains of spotted fever group rickettsiae from ticks collected in France. J Clin Microbiol 28:1597–1599PubMedGoogle Scholar
  19. Psaroulaki A, Loukaidis F, Hadjichristodoulou C et al (1999) Detection and identification of the aetiological agent of Mediterranean spotted fever (MSF) in two genera of ticks in Cyprus. Trans R Soc Trop Med Hyg 93:597–598. doi:10.1016/S0035-9203(99)90061-5 CrossRefPubMedGoogle Scholar
  20. Raoult D, Tissot Dupont H, Caraco P et al (1992) Mediterranean spotted fever in Marseille: descriptive epidemiology and the influence of climatic factors. Eur J Epidemiol 8:192–197. doi:10.1007/BF00144799 CrossRefPubMedGoogle Scholar
  21. Santos AS, Bacellar F, Santos-Silva M et al (2002) Ultrastructural study of the infection process of Rickettsia conorii in the salivary glands of the vector tick Rhipicephalus sanguineus. Vector Borne Zoonotic Dis 2:165–177. doi:10.1089/15303660260613738 CrossRefPubMedGoogle Scholar
  22. Schaible UE, Gern L, Wallich R et al (1993) Distinct patterns of protective antibodies are generated against Borrelia burgdorferi in mice experimentally inoculated with high and low doses of antigen. Immunol Lett 36:219–226. doi:10.1016/0165-2478(93)90056-8 CrossRefPubMedGoogle Scholar
  23. Tringali G, Intonazzo V, Perna AM et al (1986) Epidemiology of boutonneuse fever in western Sicily. Distribution and prevalence of spotted fever group rickettsial infection in dog ticks (Rhipicephalus sanguineus). Am J Epidemiol 123:721–727PubMedGoogle Scholar
  24. Troughton DR, Levin ML (2007) Life cycles of seven ixodid tick species (Acari: Ixodidae) under standardized laboratory conditions. J Med Entomol 44:732–740. doi:10.1603/0022-2585(2007)44[732:LCOSIT]2.0.CO;2 CrossRefPubMedGoogle Scholar
  25. Walker DH, Popov VL, Wen J et al (1994) Rickettsia conorii infection of C3H/HeN mice. a model of endothelial-target rickettsiosis. Lab Invest 70:358–368PubMedGoogle Scholar
  26. Walker JB, Keirans JE, Horak IG (2000) The genus Rhipicephalus (Acari, Ixoidae). a guide to the brown ticks of the World. Cambridge University Press, CambridgeGoogle Scholar
  27. Zhu Y, Fournier PE, Eremeeva M et al (2005) Proposal to create subspecies of Rickettsia conorii based on multi-locus sequence typing and an emended description of Rickettsia conorii. BMC Microbiol 5:1–11. doi:10.1186/1471-2180-5-11 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. L. Levin
    • 1
  • L. Killmaster
    • 1
  • G. Zemtsova
    • 1
  • D. Grant
    • 1
  • K. Y. Mumcuoglu
    • 2
  • M. E. Eremeeva
    • 1
  • G. A. Dasch
    • 1
  1. 1.Rickettsial Zoonoses Branch, Mail Stop G-13, National Center for Zoonotic, Vector-borne and Enteric DiseasesCenters for Disease Control and PreventionAtlantaUSA
  2. 2.Department of ParasitologyHebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations