Experimental and Applied Acarology

, Volume 48, Issue 1–2, pp 19–30 | Cite as

Exploration of the susceptibility of AChE from the poultry red mite Dermanyssus gallinae (Acari: Mesostigmata) to organophosphates in field isolates from France

  • Lise Roy
  • Claude Chauve
  • Jean Delaporte
  • Gilbert Inizan
  • Thierry Buronfosse


The red fowl mite Dermanyssus gallinae (De Geer, 1778) is a hematophagous mite species, which is very commonly found in layer facilities in Europe. The economic and animal health impact of this parasite is quite important. In laying hen houses, organophosphates are almost the only legally usable chemicals. Detecting a target resistance can be useful in order to limit the emergence of resistant populations. The acetylcholinesterase (AChE) activity and the enzyme sensitivity to paraoxon was investigated in 39 field samples and compared to a susceptible reference strain (SSK). Insensitivity factor values (expressed as IC50 ratio) obtained from field isolates compared to SSK revealed some polymorphism but not exceeding a 6-fold difference. The kinetic characteristics of AChE from some field samples showed some difference in K M values for acetylthiocholine and inhibition kinetics performed with diethyl paraoxon exhibited a 5.5-fold difference in the bimolecular rate constant in one field isolate. Taken together, these data suggested that differences in AChE susceptibility to organophosphates may exist in D. gallinae but no resistant population was found.


Dermanyssus gallinae Inhibition of acetylcholinesterase Paraoxon Field isolates Organophosphate resistance 



We are grateful for having provided SSK strain to O. Kilpinen and N. Hansen (Danish Institute of Agricultural Sciences, Denmark) and for their help and advices to A. Micoud, C. Brazier and C. Mottet (Service Régional de la Protection des Végétaux, France). We also want to thank Mehdi Gharbi (IUT, Villeurbanne, France), Jennifer Lanneau (IUT, Villeurbanne, France) and Coralie Pulido (LGTA, Saint-Genis Laval, France) for their technical help.


  1. Aldridge WN (1950) Some properties of specific cholinestarase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl triphosphate (E605) and analogues. Biochem J 46:451–460PubMedGoogle Scholar
  2. Aldridge WN, Davison AN (1952) The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. Biochem J 52:62–70Google Scholar
  3. Baxter GD, Green P et al (1999) Detecting resistance to organophosphates and carbamates in the cattle tick Boophilus microplus, with a propoxur-based biochemical test. Exp Appl Acarol 23:907–914. doi: 10.1023/A:1006364816302 PubMedCrossRefGoogle Scholar
  4. Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Vet Parasitol 79:239–245. doi: 10.1016/S0304-4017(98)00167-8 PubMedCrossRefGoogle Scholar
  5. Chen Z, Newcomb R, Forbes E et al (2001) The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol 31:805–816. doi: 10.1016/S0965-1748(00)00186-7 PubMedCrossRefGoogle Scholar
  6. Ellman GL, Courtney KD et al (1961) A new, rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. doi: 10.1016/0006-2952(61)90145-9 PubMedCrossRefGoogle Scholar
  7. Fournier D, Mutero A (1994) Modification of the acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol 108C:19–31Google Scholar
  8. Keçeci T, Handemir E, Orhan G (2004) The effect of Dermanyssus gallinae infestation on hematological values and body weights of cocks. Turkiye Parazitol Derg 28:192–196Google Scholar
  9. Keïta A, Pagot E, Pommier P et al (2006) Efficacy of phoxim 50% E.C. (ByeMite) for treatment of Dermanyssus gallinae in laying hens under field conditions. Rev Med Vet 157:590–594Google Scholar
  10. Kirkwood AC (1967) Anaemia in poultry infested with the red mite Dermanyssus gallinae. Vet Rec 80(17):514–516PubMedGoogle Scholar
  11. Lee RM, Bantham P (1966) The activity and organophosphate inhibition of cholinesterase from susceptible and resistant ticks (Acari). Entomol Exp Appl 9:13–24. doi: 10.1007/BF00341156 CrossRefGoogle Scholar
  12. Lenormand T, Bourguet D, Guillemaud T et al (1999) Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 400:861–864. doi: 10.1038/23685 PubMedCrossRefGoogle Scholar
  13. Nabeshima T, Mori A, Kozaki T et al (2004) An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem Biophys Res Commun 313:794–801. doi: 10.1016/j.bbrc.2003.11.141 PubMedCrossRefGoogle Scholar
  14. Newcomb RD, Campbell PM, Russel RJ et al (1997) cDNA cloning, Baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem Mol Biol 27:15–25. doi: 10.1016/S0965-1748(96)00065-3 PubMedCrossRefGoogle Scholar
  15. Nolan J, Schnitzerling HJ (1975) Characterisation of acetylcholinesterases of acaricide resistant and susceptible strains of the cattle tick Boophilus microplus. I. Extraction of the critical component and comparison with enzyme from other sources. Pest Biochem Physiol 5:178–188CrossRefGoogle Scholar
  16. Nordenfors H, Höglund J, Tauson R et al (2001) Effect of permethrin impregnated plastic strips on Dermanyssus gallinae in loose-housing systems for laying hens. Vet Parasitol 102:121–131. doi: 10.1016/S0304-4017(01)00528-3 PubMedCrossRefGoogle Scholar
  17. Pruett JH (2002) Comparative inhibition kinetics for acetylcholinesterases extracted from organophosphate resistant and susceptible strains of Boophilus microplus (Acari:Ixodidae). J Econ Entomol 95:1239–1244PubMedGoogle Scholar
  18. Reuveny H, Cohen E (2004) Evaluation of mechanisms of azinphos-methyl resistance in the codling moth Cydia pomonella (L.). Insect Biochem Physiol 57:92–100. doi: 10.1002/arch.20016 CrossRefGoogle Scholar
  19. Rosenfeld C, Kousba A, Sultatos LG (2001) Interactions of rat brain acetylcholinesterase with the detergent Triton X-100 and the organophosphate paraoxon. Toxicol Sci 63:208–213. doi: 10.1093/toxsci/63.2.208 PubMedCrossRefGoogle Scholar
  20. Smissaert HR (1964) Cholinesterase inhibition in spider mites susceptible and resistant to organophosphates. Science 143:129–134. doi: 10.1126/science.143.3602.129 PubMedCrossRefGoogle Scholar
  21. Stone BF, Nolan J, Schuntner CA (1976) Biochemical genetics of resistance to organophosphorus acaricides in three strains of the cattle tick, Boophilus microplus. Aust J Biol Sci 29:265–279PubMedGoogle Scholar
  22. Stumpf N, Zebitz C, Kraus W et al (2001) Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 69:131–142. doi: 10.1006/pest.2000.2516 CrossRefGoogle Scholar
  23. Tsagkarakou A, Pasteur N, Cuany A et al (2002) Mechanisms of resistance to organophosphates in Tetranychus urticae (Acari: Tetranychidae) from Greece. Insect Biochem Mol Biol 32:417–424. doi: 10.1016/S0965-1748(01)00118-7 PubMedCrossRefGoogle Scholar
  24. Valiente Moro C, Chauve C, Zenner L (2005) Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite 12:99–109PubMedGoogle Scholar
  25. Valiente Moro C, Fravalo P, Amelot M et al (2007) Colonization and invasion in chicks experimentally infected with Dermanyssus gallinae contaminated by Salmonella enteritidis. Avian Pathol 36:307–311. doi: 10.1080/03079450701460484 CrossRefGoogle Scholar
  26. Wang JJ, Cheng WX et al (2004) The effect of the insecticide dichlorvos on esterase extracted from the psocids, Liposcelis bostrychophila and L. entomophila. J Insect Sci 4:23–27PubMedGoogle Scholar
  27. Weill M, Lutfalla G, Mogensen K et al (2003) Comparative genomics: Insecticide resistance in mosquito vectors. Nature 423:136–137. doi: 10.1038/423136b PubMedCrossRefGoogle Scholar
  28. Wood HP (1917) The chicken mite: its life history and habits United States Department of Agriculture, Washington, DC. Bull 553:1–14Google Scholar
  29. Xu G, Fang QQ, Keirans JE et al (2003) Cloning and sequencing of putative acetylcholinesterase cDNAs from the American dog tick, Dermacentor variabilis, and the brown dog tick, Rhipicephalus sanguineus (Acar : Ixodidae). J Med Ent 40:890–896CrossRefGoogle Scholar
  30. Zahavi M, Tahori AS (1970) Sensitivity of acetylcholinesterase in spider mites to organophosphorous compounds. Biochem Pharmacol 19:219–225. doi: 10.1016/0006-2952(70)90342-4 PubMedCrossRefGoogle Scholar
  31. Zeman P, Železnỳ J (1985) The susceptibility of the poultry red mite, Dermanyssus gallinae (De Geer, 1778), to some acaricides under laboratory conditions. Exp Appl Acarol 1:17–22. doi: 10.1007/BF01262196 PubMedCrossRefGoogle Scholar
  32. Zhu KY, Lee SH, Clarck JM (1996) A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in colorado potato beetle. Pestic Biochem Physiol 55:100–108. doi: 10.1006/pest.1996.0039 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lise Roy
    • 1
  • Claude Chauve
    • 1
  • Jean Delaporte
    • 2
  • Gilbert Inizan
    • 2
  • Thierry Buronfosse
    • 1
  1. 1.Ecole Nationale Vétérinaire de Lyon, Laboratoire de parasitologieUniversité de LyonMarcy-L’EtoileFrance
  2. 2.Bayer Healthcare Animal Health, Bayer Pharma S.A.SSaint-Ave CedexFrance

Personalised recommendations