Experimental and Applied Acarology

, Volume 48, Issue 1–2, pp 93–104 | Cite as

The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents

  • Claire Valiente MoroEmail author
  • Carlos J. De Luna
  • Alexander Tod
  • Jonathan H. Guy
  • Olivier A. E. Sparagano
  • Lionel Zenner


The poultry red mite, D. gallinae has been involved in the transmission of many pathogenic agents, responsible for serious diseases both in animals and humans. Nowadays, few effective methods are available to control the ectoparasite in poultry farms. Consequently, this is an emerging problem which must be taken into account to maintain good health in commercial egg production. This paper addresses the vector capacity of the ectoparasite with special emphasis on salmonellae, pathogenic agents responsible for many of the most important outbreaks of food-borne diseases worlwide. It has been experimentally shown that D. gallinae could act as a biological vector of S. enteritidis and natural carriage of these bacteria by the mite on poultry premises has also been reported. It was also found that D. gallinae carried other pathogens such as E. coli, Shigella sp., and Staphylococcus, thus increasing the list of pathogenic agents potentially transmitted by the mite.


Dermanyssus gallinae Vectorial role Pathogenic agents Salmonella 



This work was partly supported financially by the European Commission through the STREP project “RESCAPE”, contract no. 036018, under the 6th Framework Programme, priority 5, food quality and safety.


  1. Arzey G (1990) Mechanism of spread of Newcastle disease. Technical bulletin—New South Wales, Agriculture and Fisheries 42, Sydney, 12 ppGoogle Scholar
  2. Ash N, Greenberg B (1980) Vector potential of the German cockroach (Dictyoptera: Blatellidae) in dissemination of Salmonella enteritidis serotype Typhimurium. J Med Entomol 17:417–423PubMedGoogle Scholar
  3. Baumler AJ, Hargis BM, Tsolis RM (2000) Tracing the origins of Salmonella outbreaks. Science 287:50–52. doi: 10.1126/science.287.5450.50 PubMedCrossRefGoogle Scholar
  4. Berger S, Disko R, Gwinner H (2003) Bacteria in starling nests. J Fur Ornit 144:317–322Google Scholar
  5. Bruneau A, Dernburg A, Chauve C, Zenner L (2001) First in vitro cycle of the chicken mite, Dermanyssus gallinae (DeGeer 1778), utilizing an artificial feeding device. Parasitology 123:583–589. doi: 10.1017/S0031182001008836 PubMedCrossRefGoogle Scholar
  6. Chamberlain RW, Sikes RK (1955) Laboratory investigations of the role of bird mites in the transmission of eastern and western equine encephalitis. Am J Trop Med Hyg 4:106–118PubMedGoogle Scholar
  7. Chamberlain RW, Sikes RK, Sudia RW (1957) Attempted laboratory infection of bird mites with the virus of Saint Louis encephalitis. Am J Trop Med Hyg 6:1047–1053PubMedGoogle Scholar
  8. Chirico J, Eriksson H, Fossum O, Jansson D (2003) The poultry red mite, Dermanyssus gallinae, a potential vector of Erysipelothrix rhusiopathiae causing erysipelas in hens. Med Vet Entomol 17:232–234. doi: 10.1046/j.1365-2915.2003.00428.x PubMedCrossRefGoogle Scholar
  9. Ciolca AL, Tanase I, May I (1968) Role of the poultry red mite, Dermanyssus gallinae, in the transmission of spirochaetosis. Arch Vet Pol 5:207–215Google Scholar
  10. Cockburn TA, Sooter CA, Langmuir AD (1957) Ecology of western Equine and Saint Louis Encephalitis viruses. A summary of field investigations in weld county, Colorado 1949–1953. Am J Hyg 65:130–146PubMedGoogle Scholar
  11. Davies RH, Breslin M (2003) Persistence of Salmonella enteritidis phage type 4 in the environment and arthropod vectors on an empty free-range chicken farm. Environ Microbiol 5:79–84. doi: 10.1046/j.1462-2920.2003.00387.x PubMedCrossRefGoogle Scholar
  12. Davies RH, Wray C (1955) The role of the lesser mealworm beetle (Alphitobius diaperinus) in carriage of Salmonella enteritidis. Vet Rec 137:407–408Google Scholar
  13. De Luna CJ, Valiente Moro C, Guy JH, Zenner L, Sparagano OAE (2008) Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae): a possible tool for biological control? Exp Appl Acarol. doi: 10.1007/s10493-008-9230-2 Google Scholar
  14. Desloire S, Valiente Moro C, Chauve C, Zenner L (2006) Comparison of four methods of extracting DNA from D. gallinae (Acari: Dermanyssidae). Vet Res 37:725–732. doi: 10.1051/vetres:2006031 PubMedCrossRefGoogle Scholar
  15. Durden LA, Linthicum KJ, Turell MJ (1992) Mechanical transmission of Venezuelan equine encephalomyelitis by hematophagous mites (Acari). J Med Vet Entomol 9:118–121Google Scholar
  16. Durden LA, Linthicum KJ, Monath P (1993) Laboratory transmission of eastern equine encephalomyelitis virus to chickens by chicken mites (Acari: Dermanyssidae). J Med Entomol 30:281–285PubMedGoogle Scholar
  17. European Food Safety Autority (2005) The community summary report on trends and sources of zoonoses, zoonotic agents and antimicrobial resistance in the European union in 2004. 25 December 2005. Part 3.1. Salmonella, pp 1–67Google Scholar
  18. Fischer OA, Matlova L, Dvorska L, Svastova P, Pavlik I (2003) Nymphs of the oriental cockroach (Blatta orientalis) as passive vectors of causal agents of avian tuberculosis and paratuberculosis. Med Vet Entomol 17:145–150. doi: 10.1046/j.1365-2915.2003.00417.x PubMedCrossRefGoogle Scholar
  19. Gray JP, Maddox CW, Tobin PC, Gummo JD, Pitts CW (1999) Reservoir competence of Carcinops pumilio for Salmonella enteritidis. J Med Entomol 36:888–891PubMedGoogle Scholar
  20. Grebenyuk RV, Chirov PA, Kadysheva AM (1972) The role of wild animals and blood-sucking arthropods in the epizootiology of infection with Listeria. Rol’ Dikikh Zhivotnykh i Krovososushchikh Chlenistonogikh v Epizootologii Listerioza. Frunze, Kirghiz SSR; Izdatel’stvo Ilim. Institut Biologii, Akademiya Nauk Kirgizskoi SSR, Frunze, Kirghiz, SSR. 124 ppGoogle Scholar
  21. Kilpinen O (2005) How to obtain a bloodmeal without being eaten by a host: the case of poultry red mite, Dermanyssus gallinae. Physiol Entomol 30:232–240. doi: 10.1111/j.1365-3032.2005.00452.x CrossRefGoogle Scholar
  22. Lacey RW (1993) Food-borne bacterial infections. Parasitology 107:S75–S93PubMedGoogle Scholar
  23. Macaluso KR, Sonenshine DE, Ceraul SM, Azad AF (2001) Infection and transovarial transmission of rickettsiae in Dermacentor variabilis ticks acquired by artificial feeding. Vector-Borne Zoonot 1:45–53. doi: 10.1089/153036601750137660 CrossRefGoogle Scholar
  24. McAllister JC, Steelman CD, Skeeles JK (1994) Reservoir competence of the lesser mealworm (Coleoptera: Tenebrionidae) for Salmonella typhimurium (Eubacteriales: Enterobacteriaceae). J Med Entomol 31:369–372PubMedGoogle Scholar
  25. Morse EV, Duncan MA (1974) Salmonellosis-an environmental health problem. JAMA 175:1015–1019Google Scholar
  26. Nakajima Y, Ishibashi J, Yukuhiro F, Asaoka A, Taylor D, Yumakawa M (2003) Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim Biophys Acta 1624:125–130PubMedGoogle Scholar
  27. Nordenfors H, Chirico J (2001) Evaluation of a sampling trap for Dermanyssus gallinae (Acari: Dermanyssidae). J Econ Entomol 94:1617–1621PubMedCrossRefGoogle Scholar
  28. Olsen AR, Hammack T (2000) Isolation of Salmonella sp. from the housefly, Musca domestica, and the dumpfly (Hydrotaea aenescens) (Wiedmann) (Diptera:Muscidae) at caged-layer houses. J Food Prot 63:958–960PubMedGoogle Scholar
  29. Petrov D (1975) Study of Dermanyssus gallinae as a carrier of Pasteurella multocida. Veterinarno—Mededitsinski Nauki 12:32–36Google Scholar
  30. Rennie L, Wilkinson PJ, Mellor PS (2001) Transovarial transmission of African swine fever virus in the argasid tick Ornithodoros moubata. Med Vet Entomol 15:140–146. doi: 10.1046/j.1365-2915.2001.00282.x PubMedCrossRefGoogle Scholar
  31. Reshetnikov PT (1967) The mite Dermanyssus gallinae, a vector of fowl spirochaetosis. Veterinariia 44:48PubMedGoogle Scholar
  32. Rodrigue DC, Tauxe RV, Rowe B (1990) International increase in Salmonella enteritidis: a new pandemic. Epidemiol Infect 105:21–27PubMedCrossRefGoogle Scholar
  33. Shirinov FB, Ibragimova AI, Misirov ZG (1972) The dissemination of the fowl-pox by the mite Dermanyssus gallinae. Veterinarya 4:48–49Google Scholar
  34. Skov MN, Spencer AG, Hald B, Petersen L, Nauerby B, Carstensen B, Madsen M (2004) The role of litter beetles as potential reservoir for Salmonella enterica and thermophilic Campylobacter spp. between broiler flocks. Avian Dis 48:9–18. doi: 10.1637/5698 PubMedCrossRefGoogle Scholar
  35. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  36. Valiente Moro C, Chauve C, Zenner L (2005) Vectorial role of some Dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite 12:99–109PubMedGoogle Scholar
  37. Valiente Moro C, Chauve C, Zenner L (2007a) Experimental infection of Salmonella enteritidis by the poultry red mite, Dermanyssus gallinae. Vet Parasitol 146:329–336. doi: 10.1016/j.vetpar.2007.02.024 PubMedCrossRefGoogle Scholar
  38. Valiente Moro C, Fravalo P, Amelot C, Chauve C, Salvat G, Zenner L (2007b) Colonization and organ invasion in chicks experimentally infected with Dermanyssus gallinae contaminated by Salmonella enteritidis. Avian Pathol 36:307–311. doi: 10.1080/03079450701460484 CrossRefGoogle Scholar
  39. Valiente Moro C, Desloire S, Vernozy-Rozand C, Chauve C, Zenner L (2007c) Comparison of the VIDAS system, FTA filter-based PCR and culture on SM ID for detecting Salmonella in Dermanyssus gallinae. Lett Appl Microbiol 44:431–436. doi: 10.1111/j.1472-765X.2007.02119.x PubMedCrossRefGoogle Scholar
  40. Valiente Moro C, Desloire S, Chauve C, Zenner L (2007d) Detection of Salmonella sp. in Dermanyssus gallinae using an FTA filter-based PCR. Med Vet Entomol 21:148–152. doi: 10.1111/j.1365-2915.2007.00684.x PubMedCrossRefGoogle Scholar
  41. Valiente Moro C, Normand P, Thioulouse J, Chauve C, Zenner L (2009) Bacterial taxa associated with the hematophagous mite, Dermanyssus gallinae detected by 16S rDNA PCR amplification and TTGE fingerprint. Res Microbiol 160:63–70. doi: 10.1016/j.resmic.2008.10.006 PubMedCrossRefGoogle Scholar
  42. Velge P, Cloeckaert A, Barrow P (2005) Emergence of Salmonella epidemics: the problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Vet Res 36:267–288. doi: 10.1051/vetres:2005005 PubMedCrossRefGoogle Scholar
  43. Wegner Z (1976) Laboratory study on some parasitic hematophagous arthropods as possible subsidiary links of the biocenosis of tick-borne encephalitis. Bull Inst Marit Trop Med Gdynia 27:75–85PubMedGoogle Scholar
  44. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703PubMedGoogle Scholar
  45. Weyer F (1975) Beobachtungen uber das Verhalten des Q-Fieber-Erregers (Coxiella burneti) in der Lederzecke Ornithodoros moubata. Tropenmed Parasitol 26:219–231PubMedGoogle Scholar
  46. Zeman P, Stika V, Skalka B, Bartik M, Dusbabek F, Lavickova M (1982) Potential role of Dermanyssus gallinae (De Geer, 1778) in the circulation of the agent of pullurosis-typhus in hens. Folia Parasitol (Praha) 29:371–374Google Scholar
  47. Zemskaya AA, Pchelkina AA (1962) The relation of gamasid mites to the virus of tick-borne encephalitis. Medskaya Parazitology 31:439–442Google Scholar
  48. Zemskaya AA, Pchelkina AA (1967) Gamasoid mites and Q fever. In: Markevich (ed) Problemy Parazitologii, Kiev, pp 258–259Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Claire Valiente Moro
    • 1
    Email author
  • Carlos J. De Luna
    • 2
  • Alexander Tod
    • 2
  • Jonathan H. Guy
    • 2
  • Olivier A. E. Sparagano
    • 2
  • Lionel Zenner
    • 3
  1. 1.Laboratoire « Microorganismes: Génome et Environnement »CNRS UMRAubiereFrance
  2. 2.School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK
  3. 3.Laboratoire de Biométrie et Biologie EvolutiveEcole Nationale Vétérinaire de Lyon & Université de Lyon—CNRS UMRMarcy L’EtoileFrance

Personalised recommendations