Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy

  • Jason A. Dunlop
  • Paul A. Selden
Review Paper


Divergence times inferred for major lineages of Chelicerata (scorpions, spiders, mites, pycnogonids and xiphosurans) in a recent paper on mitochondrial phylogeny by Jeyaprakash and Hoy are compared to the known stratigraphical occurrences of these groups. Erroneous statements concerning fossil date estimates in the original study are corrected. We emphasize that the fossil record of chelicerates is more complete than is sometimes assumed, and that paleontology plays a key role in dating cladogenesis by setting minimum divergence times, which can and do falsify molecular clock estimates where the inferred divergence is substantially younger than the known fossil record. The oldest representatives of each chelicerate order are documented here, together with similar data for the major mite lineages down to family level. Through these, we hope to provide a robust framework and reference points for future molecular systematic studies of this nature.


Chelicerata Fossil record Molecular clocks Phylogeny 



We thank Victor Fet, Bill Shear and the reviewers for helpful comments. JAD acknowledges a DFG grant SCHO 442/10-1.


  1. Anderson LI, Selden PA (1997) Opisthosomal fusion and phylogeny of Palaeozoic Xiphosura. Lethaia 30:19–31Google Scholar
  2. Aoki J (1974) Mizunami amber and fossil insects. 3. Arachnida: Acarina. Bull Mizunami Fossil Mus 1:397–400. In Japanese; English summary in Vol 2, Addenda: 114Google Scholar
  3. Arillo A, Subías LS (2002) Second fossil oribatid mite from the Spanish Lower Cretaceous amber. Eupterotegaeus bitranslamellatus n. sp. (Acariformes, Oribatida, Cepheidae). Acarologia 42:403–406Google Scholar
  4. Bernini F (1986) Current ideas on the phylogeny and adaptive radiations of Acarida. Boll Zool 53:279–313Google Scholar
  5. Bernini F, Carnevale G, Bagnoli G, Stouge S (2002) An early Ordovician oribatid mite (Acari: Oribatida) from the island of Öland, Sweden. In: Bernini F, Nannelli R, Nuzzaci G, de Lillo E (eds) Acarid phylogeny and evolution. Adaptations in mites and ticks. Kluwer, Dordrecht, pp 45–47Google Scholar
  6. Bertkau P (1878) Einige Spinnen und ein Myriapode aus der Braunkohle von Rott. Verhandl d naturh Vereins d preuss 35:346–360Google Scholar
  7. Błaszak J, Cokendolpher JC, Polyak VJ (1995) Paleozercon cavernicolous, a new genus and new species of fossil mite from a cave in the southwestern U.S.A. (Acari, Gamasida: Zerconidae). Int J Acarol 21:253–259CrossRefGoogle Scholar
  8. Bolland HR, Magowski WŁ (1990) Neophyllobius succineus n. sp. from Baltic amber (Acari: Raphignathoidea: Camerobiidae). Entomol Ber 50:17–21Google Scholar
  9. Brauckmann C (1987) Neue Arachniden (Ricinuleida, Trigonotarbida) aus dem Namurium B von Hagen-Vorhalle (Ober-Karbon; West-Deutschland). Dortmunder Beit Lndknde, naturwiss Mitt 21:97–109Google Scholar
  10. Brauckmann C, Koch L (1983) Prothelyphonus naufragus n. sp., ein neuer Geisselskorpion [Arachnida: Thelyphonida: Thelyphonidae] aus dem Namurium (unteres Oberkarbon) von West-Deutschland. Entomol Germ 9:63–74Google Scholar
  11. Bulanova-Zachvatkina EM (1974) New genera of oribatid mites from the Upper Cretaceous of Tajmyr (in Russian) Paleont J 2:141–144Google Scholar
  12. Caster KE, Brooks HK (1956) New fossils from the Canadian–Chazyan (Ordovician) hiatus in Tennessee. Bull Am Palaeont 36:157–199Google Scholar
  13. Cockerell TDA (1917) Arthropods in Burmese amber. Am J Sci 44(4):360–368Google Scholar
  14. Coineau Y, Magowski WŁ (1994) Caeculidae in amber. Acarologia 35:243–246Google Scholar
  15. de la Fuente J (2003) The fossil record and origin of ticks (Acari: Parasitiformes: Ixodida). Exp Appl Acarol 29:331–344. doi: 10.1023/A:1025824702816 PubMedCrossRefGoogle Scholar
  16. Domes K, Maraun M, Scheu S, Cameron SL (2008) The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genomics 9:532. doi: 10.1186/1471-2164-9-532 PubMedCrossRefGoogle Scholar
  17. Donoghue PCV, Benton MJ (2007) Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends Ecol Evol 22:424–431. doi: 10.1016/j.tree.2007.05.005 PubMedCrossRefGoogle Scholar
  18. Dubinin VB (1962) Class Acaromorpha: mites or gnathosomic chelicerate arthropods. In: Rodendorf BB (ed) Fundamentals of palaeontology. Academy of Sciences of the USSR, Moscow, pp 447–473 (In Russian)Google Scholar
  19. Dunlop JA (2007) A large parasitengonid mite (Acari, Erythraeoidea) from the early Cretaceous Crato Formation of Brazil. Foss Rec 10:91–98. doi: 10.1002/mmng.200700001 CrossRefGoogle Scholar
  20. Dunlop JA, Alberti G (2008) The affinities of mites and ticks: a review. J Zool Syst Evol Res 46:1–18. doi: 10.1111/j.1439-0469.2007.00429.x Google Scholar
  21. Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst Evol Res 43:8–21. doi: 10.1111/j.1439-0469.2004.00284.x CrossRefGoogle Scholar
  22. Dunlop JA, Anderson LI, Kerp H, Hass H (2003) Preserved organs of Devonian harvestmen. Nature 425:916. doi: 10.1038/425916a PubMedCrossRefGoogle Scholar
  23. Dunlop JA, Wunderlich J, Poinar GO Jr (2004) The first fossil opilioacariform mite (Acari: Opilioacariformes) and the first Baltic amber camel spider (Solifugae). Trans R Soc Edinb Earth Sci 94:273–281Google Scholar
  24. Dunlop JA, Penney D, Jekel D (2008a) A summary list of fossil spiders. In: Platnick NI (ed) The world spider catalog, version 9.0. American Museum of Natural History, pp 1–75, online at
  25. Dunlop JA, Tetlie OE, Prendini L (2008b) Reinterpretation of the Silurian scorpion Proscorpius osborni (Whitfield): integrating data from Palaeozoic and Recent scorpions. Palaeontology 51:303–320. doi: 10.1111/j.1475-4983.2007.00749.x CrossRefGoogle Scholar
  26. Dunlop JA, Penney D, Tetlie OE, Anderson LI (2008c) How many species of fossil arachnid are there? J Arachnol 36:267–272. doi: 10.1636/CH07-89.1 CrossRefGoogle Scholar
  27. Ewing HE (1937) Acarina from Canadian amber. Uni Tor Stud Geol Ser 40:56–62Google Scholar
  28. Fet V, Sissom WD, Lowe G, Braunwalder ME (2000) Catalog of the scorpions of the world (1758–1998). The New York Entomological Society, New YorkGoogle Scholar
  29. Gillespie JM, Bain BA (2006) Postembryonic development of Tanystylum bealensis (Pycnogonida, Ammotheidae) from Barkley Sound, British Columbia, Canada. J Morphol 267:308–317. doi: 10.1002/jmor.10402 PubMedCrossRefGoogle Scholar
  30. Giribet G, Edgecombe GD, Wheeler WC, Babbitt C (2002) Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18:5–70. doi: 10.1111/j.1096-0031.2002.tb00140.x PubMedGoogle Scholar
  31. Gradstein FM et al (2004) A geological time scale 2004. Cambridge University Press, Cambridge, p 384Google Scholar
  32. Harger O (1874) Notice of a new spider from the Coal Measures of Illinois. Am J Sci 7:219–223Google Scholar
  33. Hassanin A (2006) Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 38:100–116. doi: 10.1016/j.ympev.2005.09.012 PubMedCrossRefGoogle Scholar
  34. Hirschmann W (1971) A fossil mite of the genus Dendrolaelaps (Acarina, Mesostigmata, Digamasellidae) found in amber from Chiapas, Mexico. Uni Calif Pub Entomol 63:69–70Google Scholar
  35. Hirst S (1923) On some arachnid remains from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire). Ann Mag Nat Hist 12(9):455–474Google Scholar
  36. Jeram AJ, Selden PA, Edwards D (1990) Land animals in the Silurian: arachnids and myriapods from Shropshire, England. Science 250:658–661. doi: 10.1126/science.250.4981.658 PubMedCrossRefGoogle Scholar
  37. Jeyaprakash A, Hoy MA (2009) First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol 47:1–18. doi: 10.1007/s10493-008-9203-5 PubMedCrossRefGoogle Scholar
  38. Judson M, Wunderlich J (2003) Rhagidiidae (Acari, Eupodoidea) from Baltic amber. Acta zool cracov 46(suppl.–Fossil Insects):147–152Google Scholar
  39. Karppinen E, Krivolutsky DA, Koponen M, Kozlovskaja LS, Laskova LM, Viitasaari M (1979) List of subfossil oribatid mites (Acarina, Oribatei) of northern Europe and Greenland. Ann entomol Fenn 45:103–108Google Scholar
  40. Karsch F (1884) Neue Milben in Bernstein. Berl Entomol Zeit 28:175–176Google Scholar
  41. Kjellesvig-Waering EN (1986) A restudy of the fossil Scorpionida of the World. Palaeont Am 55:1–287Google Scholar
  42. Klompen H, Grimaldi D (2001) First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae). Ann Entomol Soc Am 94:10–15. doi: 10.1603/0013-8746(2001)094[0010:FMROAP]2.0.CO;2 CrossRefGoogle Scholar
  43. Koch CL, Berendt GC (1854) Die im Bernstein befindlichen Myriapoden, Arachniden und Apteren der Vorwelt. In: Berendt GC (ed) Die in Bernstein Befindlichen Organischen Reste der Vorwelt Gesammelt in Verbindung mit Mehreren Bearbeitetet und Herausgegeben 1. Nicolai, BerlinGoogle Scholar
  44. Krivolutsky DA, Krasilov BA (1977) Oribatid mites from Upper Jura deposits of USSR. In: Skarlato OA, Balashov YS (eds) Morphology and diagnostics of mites. Zoological Institute, Leningrad, pp 16–24 (In Russian)Google Scholar
  45. Krivolutsky DA, Ryabinin NA (1976) Oribatid mites in Siberian and Far East amber. Rep Acad Sci USSR 230:945–948Google Scholar
  46. Kulicka R (1990) The list of animal inclusions in Baltic amber from collection of the museum of earth in Warsaw. Prace Muzeum Ziemi 41:144–146Google Scholar
  47. Laurie M (1899) On a Silurian scorpion and some additional eurypterid remain from the Pentland Hills. Trans R Soc Edinb 39:575–590Google Scholar
  48. Lin Q-b, Yao Y-m, Xiang W-d, Xia Y-r (1988) An Oligocene micropalaeoentomofauna from Gubei district of Shandong and its ecological environment. Acta Micropalaeont Sin 5:331–345 (in Chinese and English)Google Scholar
  49. Lourenço WR, Gall JC (2004) Fossil scorpion from the Buntsandstein (Early Triassic) of France. C R Palevol 3:369–378. doi: 10.1016/j.crpv.2004.06.006 CrossRefGoogle Scholar
  50. Magowski WŁ (1994) Discovery of the first representative of the mite subcohort Heterostigmata (Arachinida: Acari) in the Mesozoic Siberian amber. Acarologia 35:229–241Google Scholar
  51. Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191. doi: 10.1016/j.ympev.2003.07.013 PubMedCrossRefGoogle Scholar
  52. Norton RA (2006) First record of Collohmannia (C. schusteri n. sp.) and Hermannia (H. sellnicki n. sp.) from Baltic amber, with notes on Sellnick’s genera of fossil oribatid mites (Acari: Oribatida). Acarologia 46:111–125Google Scholar
  53. Norton RA, Poinar GO Jr (1993) Reassessment and new records of oribatid mite fossils from Tertiary Neotropical amber. Acarologia 34:57–68Google Scholar
  54. Norton RA, Bonamo PN, Grierson JD, Shear WA (1988) Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J Paleontol 62:259–269Google Scholar
  55. Palmer AR (1957) Miocene arthropods from the Mojave Desert California. Geol Surv Prof Pap 294-G:237–280Google Scholar
  56. Pampaloni L (1902) I resti organici nel disodile di Melilli in Sicilia. Palaeontogr Ital 8:121–130Google Scholar
  57. Penney D, Selden PA (2006) Assembling the Tree of Life — Phylogeny of Spiders: a review of the strictly fossil spider families. In: Deltshev C, Stoev P (eds) European Arachnology 2005. Acta Zool Bulgarica Suppl 1:25–39Google Scholar
  58. Petrunkevitch AI (1913) A monograph of the terrestrial Palaeozoic Arachnida of North America. Trans Conn Acad Arts Sci 18:1–137Google Scholar
  59. Pocock RI (1911) A monograph of the terrestrial Carboniferous Arachnida of Great Britain. Monogr Palaeontogr Soc 315:1–84Google Scholar
  60. Podsiadlowski L, Braband A (2006) The complete mitochondrial genome of the sea spider Nymphon gracile (Arthropoda: Pycnogonida). BMC Genomics 7:1–13. doi: 10.1186/1471-2164-7-284 CrossRefGoogle Scholar
  61. Poinar GO Jr, Brown AE (2003) A new genus of hard ticks in Cretaceous Burmese amber (Acari: Ixodida: Ixodidae). Syst Parasitol 54:199–205. doi: 10.1023/A:1022689325158 PubMedCrossRefGoogle Scholar
  62. Poinar GO Jr, Buckley R (2008) Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from Lower Cretaceous Burmese amber. Proc Entomol Soc Wash 110:445–450Google Scholar
  63. Poschmann M, Anderson LI, Dunlop JA (2005) Chelicerate arthropods, including the oldest phalangiotarbid arachnid, from the early Devonian (Siegenian) of the Rhenish Massif, Germany. J Paleontol 79:110–124. doi: 10.1666/0022-3360(2005) CrossRefGoogle Scholar
  64. Ramsay GW (1960) Sub-fossil mites from the Hutt Valley. Trans R Soc NZ 88:575–576Google Scholar
  65. Regier JC, Shultz JW (2001) Elongation factor-2: a useful gene for arthropod phylogenetics. Mol Phylogenet Evol 20:136–148. doi: 10.1006/mpev.2001.0956 PubMedCrossRefGoogle Scholar
  66. Regier JC, Shultz JW, Kambic RE (2005) Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc R Soc Lond B Biol Sci 272:395–401. doi: 10.1098/rspb.2004.2917 CrossRefGoogle Scholar
  67. Roemer F (1866) Protolycosa anthracophila, eine fossile Spinne aus dem Steinkohlengebirge Oberschlesiens. N Jb Min Geol Paläont 1866:136–143Google Scholar
  68. Rowland JM, Sissom WD (1980) Report on a fossil palpigrade from the Tertiary of Arizona, and a review of the morphology and systematics of the order (Arachnida: Palpigradida). J Arachnol 8:69–86Google Scholar
  69. Rudkin DM, Young GA, Nowlan GS (2008) The oldest horseshoe crab: a new xiphosurid from late Ordovician Konservatt-Lagerstätten deposits, Manitobia, Canada. Palaeont 51:1–9. doi: 10.1111/j.1475-4983.2007.00746.x Google Scholar
  70. Selden PA (1993a) Fossil arachnids—recent advances and future prospects. Mem Qnld Mus 33:389–400Google Scholar
  71. Selden PA (1993b) Arthropoda (Aglaspidida, Pycnogonida and Chelicerata). In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 297–320Google Scholar
  72. Selden PA (1996) Fossil mesothele spiders. Nature 379:498–499. doi: 10.1038/379498b0 CrossRefGoogle Scholar
  73. Selden PA, Gall J-C (1992) A Triassic mygalomorph spider from the northern Vosges, France. Palaeont 35:211–235Google Scholar
  74. Selden PA, Shear WA, Bonamo PM (1991) A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeont 34:241–281Google Scholar
  75. Selden PA, Anderson HM, Anderson JM, Fraser NC (1999) The oldest araneomorph spiders, from the Triassic of South Africa and Virginia. J Arachnol 27:401–414Google Scholar
  76. Selden PA, Shear WA, Sutton M (2008) Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proc Natl Acad Sci USA 105:20781–20785. doi: 10.1073/pnas.0809174106 PubMedCrossRefGoogle Scholar
  77. Sellnick M (1919) Die Oribatiden der Bernsteinsammlung der Universität Königsberg i. Pr. Schrift Physikal-Okon Gesell Konigsberg 59:21–42Google Scholar
  78. Sellnick M (1931) Milben in Bernstein. Bernsteinforsch 2:148–180Google Scholar
  79. Shear WA, Schawaller W, Bonamo PM (1989) Record of Palaeozoic pseudoscorpions. Nature 341:527–529. doi: 10.1038/341527a0 CrossRefGoogle Scholar
  80. Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265. doi: 10.1111/j.1096-3642.2007.00284.x CrossRefGoogle Scholar
  81. Sivhed U, Wallwork JA (1978) An early Jurassic oribatid mite from southern Sweden. Geol Foren Stockh Forh 100:65–70Google Scholar
  82. Solhøy IW, Solhøy T (2000) The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. J Paleolimnol 23:35–47. doi: 10.1023/A:1008068915118 CrossRefGoogle Scholar
  83. Southcott RV, Lange RT (1971) Acarine and other microfossils from the Maslin Eocene, South Australia. Rec S Aust Mus 16(7):1–21Google Scholar
  84. Størmer L (1951) A new eurypterid from the Ordovician of Montgomeryshire, Wales. Geol Mag 88:409–422CrossRefGoogle Scholar
  85. Subías LS, Arillo A (2002) Oribatid mite fossils from the Upper Devonian of South Mountain, New York and the Lower Carboniferous of County Antrim Northern Ireland (Acariformes, Oribatida). Est Mus Cienc Nat Alava 17:93–106Google Scholar
  86. Türk E (1963) A new tyroglyphid deutonymph in amber from Chiapas, Mexico. Uni Calif Pub Entomol 31:49–51Google Scholar
  87. Vercammen-Grandjean PH (1973) Study of the “Erythraeidae, R.O.M. No. 8” of Ewing, 1937. In: Daniel M and Rosický B (eds) Proceedings of the 3rd International Congress of Acarology. Academia, Prague, p 329–335Google Scholar
  88. Vollrath F, Selden PA (2007) The role of behavior in the evolution of spiders, silks, and webs. Annu Rev Ecol Evol Syst 38:819–846. doi: 10.1146/annurev.ecolsys.37.091305.110221 CrossRefGoogle Scholar
  89. von Heyden CHG (1860) Fossile Gallen auf Blättern aus den Braunkohlengrube von Salzhausen. Ber. Oberh Ges Nat Heik Gieszen 8:63Google Scholar
  90. von Heyden CHG (1862) Gliederthiere aus der Braunkohle des Niederrhein’s, der Wetterau und der Röhn. Palaeontographica 10:62–82Google Scholar
  91. Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden and the phylogenetic position of pycnogonids. Palaentology 45:421–436. doi: 10.1111/1475-4983.00244 CrossRefGoogle Scholar
  92. Wheeler WC, Hayashi CY (1998) The phylogeny of the extant chelicerate orders. Cladistics 14:173–192. doi: 10.1111/j.1096-0031.1998.tb00331.x CrossRefGoogle Scholar
  93. Witlański W (2000) Aclerogamasus stenocornis sp. n., a fossil mite from the Baltic amber (Acari: Gamasida: Parasitidae). Genus 11:619–626Google Scholar
  94. Womersley H (1957) A fossil mite (Acronothrus ramus n.sp.) from Cainozoic resin at Allendale, Victoria. Proc R Soc Vic 69:21–23Google Scholar
  95. Woolley TA (1971) Fossil oribatid mites in amber from Chiapas, Mexico (Acarina: Oribatei = Cryptostigmata). Uni Calif Pub Entomol 63:91–99Google Scholar
  96. Wunderlich J (2008) (ed) Fossil and extant spiders. Beitr Araneol 5:1–870Google Scholar
  97. Zacharda M, Krivoluckij DA (1985) Prostigmatic mites (Acarina: Prostigmata) from the Upper Cretaceous and Paleogene amber of the USSR. Vest cesk ven spol Zool 49:147–152Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Museum für Naturkunde, Leibniz Institute for Research on Evolution and BiodiversityHumboldt University BerlinBerlinGermany
  2. 2.The Paleontological InstituteUniversity of KansasLawrenceUSA
  3. 3.Department of PalaeontologyNatural History MuseumLondonUK

Personalised recommendations