Experimental and Applied Acarology

, Volume 48, Issue 1–2, pp 143–155

Phylogenetic relationship between Dermanyssus gallinae populations in European countries based on mitochondrial COI gene sequences

  • M. Marangi
  • C. J. de Luna
  • M. A. Cafiero
  • A. Camarda
  • S. le Bouquin
  • D. Huonnic
  • A. Giangaspero
  • O. A. E. Sparagano
Article

Abstract

Phylogenetic analysis of Dermanyssus gallinae mites originating from UK, France and Italy was performed using partial amplification of the mitochondrial COI gene. Results showed that UK samples reveal the greatest variation and diversity and are linked to one of the French populations highlighting North–South genetic transitions in European red mite populations. Intra-farm variations between mite samples highlighted the diversity between national populations and possibly its origin from the different chemical strategies used in each country.

Keywords

Phylogeny Dermanyssus gallinae Population diversity Mitochondrial COI 

References

  1. Ballard JWO, Rand DM (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst 36:621–642. doi:10.1146/annurev.ecolsys.36.091704.175513 CrossRefGoogle Scholar
  2. Brannstrom S, Morrison DA, Mattsson JG, Chirico J (2008) Genetic differences in internal transcribed spacer 1 between Dermanyssus gallinae from wild birds and domestic chickens. Med Vet Entomol 22:152–155. doi:10.1111/j.1365-2915.2008.00722.x PubMedCrossRefGoogle Scholar
  3. Brockis DC (1980) Mite infestations. Vet Rec 107:315–316PubMedGoogle Scholar
  4. Brunner PC, Chatzivassilio EK, Katis NI, Frey JE (2004) Host associated genetic differentiation in Thrips tabaci (Insecta: Thysanoptera), as determined from mtDNA sequence data. Heredity 93:364–370. doi:10.1038/sj.hdy.6800512 PubMedCrossRefGoogle Scholar
  5. Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Vet Parasitol 79:239–245. doi:10.1016/S0304-4017(98)00167-8 PubMedCrossRefGoogle Scholar
  6. Chirico J, Eriksson H, Fossum O, Jansson D (2003) The poultry red mite, Dermanyssus gallinae, a potential vector of Erysipelothrix rhusiopathiae causing erysipelas in hens. Med Vet Entomol 17:232–234. doi:10.1046/j.1365-2915.2003.00428.x PubMedCrossRefGoogle Scholar
  7. Cruickshank RH (2002) Molecular markers for the phylogenetics of mites and ticks. Syst Appl Acarol 7:3–14Google Scholar
  8. Desloire S, Valiente Moro C, Chauve C, Zenner L (2006) Comparison of four methods of extracting DNA from Dermanyssus gallinae (Acari: Dermanyssidae). Vet Res 37:725–732. doi:10.1051/vetres:2006031 PubMedCrossRefGoogle Scholar
  9. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14813–14817. doi:10.1073/pnas.0406166101 CrossRefGoogle Scholar
  10. Hills DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453. doi:10.1086/417338 CrossRefGoogle Scholar
  11. Hinomoto N, Takafuji A (2001) Genetic diversity and phylogeny of the Kanzawa spider mite, Tetranychus kanzawai, in Japan. Exp Appl Acarol 25:355–370. doi:10.1023/A:1017934218898 PubMedCrossRefGoogle Scholar
  12. Hinomoto N, Osakabe M, Gotoh T, Takafuji A (2001) Phylogenetic analysis of green and red forms of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), in Japan, based on mitochondrial cytochrome oxidase subunit I sequences. Appl Entomol Zool (Jpn) 36:459–464. doi:10.1303/aez.2001.459 CrossRefGoogle Scholar
  13. Kambhampati S, Rai K (1991) Variation in mitochondrial DNA of Aedes species (Diptera: Culicidae). Evol Int J Org Evol 45:120–129. doi:10.2307/2409487 Google Scholar
  14. Kirkwood A (1963) Longevity of the mites Dermanyssus gallinae and Liponyssus sylviarum. Exp Parasitol 14:358–366. doi:10.1016/0014-4894(63)90043-2 PubMedCrossRefGoogle Scholar
  15. Lee ML, Suh SJ, Kwon YJ (1999) Phylogeny and diagnostic markers of six Tetranychus species (Acarina: Tetranychidae) in Korea based on the mitochondrial cytochrome oxidase subunit I. J Asia-Pacific Entomol 2:85–92. doi:10.1016/S1226-8615(08)60035-7 CrossRefGoogle Scholar
  16. Mangold AJ, Barques MD, Mas-Coma S (1998) Mithocondrial 16S rDNA sequences and phylogenetic relantionships of species of Riphicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitol Res 84(6):478–484. doi:10.1007/s004360050433 PubMedCrossRefGoogle Scholar
  17. Marangi M, Cafiero MA, Capelli G, Camarda A, Sparagano OAE, Giangaspero A (2008) Evaluation of the poultry red mite (Dermanyssus gallinae, Acarina: Dermanyssidae) susceptibility to some acaricides in a field population from Italy. Exp Appl Acarol 17. doi:10.1007/s10493-008-9224-0
  18. Navajas M, Gutierrez J, Bonato O, Bolland HR, Mapangoudivassa S (1994) Intraspecific diversity of the cassava green mite Mononycellus progresivus (Acari, Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA-sequences and cross-breeding. Exp Appl Acarol 18:351–360. doi:10.1007/BF00116316 PubMedCrossRefGoogle Scholar
  19. Puterka GJ, Black WCIV, Steiner WM, Burton RL (1993) Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity 70:604–618. doi:10.1038/hdy.1993.87 PubMedCrossRefGoogle Scholar
  20. Ros VID, Breeuwer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42:239–262. doi:10.1007/s10493-007-9092-z PubMedCrossRefGoogle Scholar
  21. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  22. Sparagano O, Pavlicevic A, Murano T, Camarda A, Sahibi H, Kilpinen O, Mul M, van Emous R, le Bouquin S, Hoele K, Cafiero MA (2008) Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Exp Appl Acarol. doi:10.1007/s10493-008-9233-z
  23. Sperling FAH, Spence JR, Andersen NM (1997) Mitochondrial DNA, allozyme, morphology, and hybrid compatibility in Limnoporus water striders (Heteroptera: Gerridae): do they all track species phylogenies? Ann Entomol Soc Am 90:401–415Google Scholar
  24. Sullivan J, Abdo Z, Joyce P, Swofford DL (2005) Evaluating the performance of a successive-approximations approach to parameter optimization in maximum-likelihood phylogeny estimation. Mol Biol Evol 22:1386–1392. doi:10.1093/molbev/msi129 PubMedCrossRefGoogle Scholar
  25. Swofford DL (2002) PAUP*, Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  26. Swofford DL, Sullivan J (2003) Phylogeny inference based on parsimony and other methods using PAUP*. In: Salemi M, Vandamme A-M (eds) The phylogenetic handbook. A practical approach to DNA and protein phylogeny. Cambridge University Press, CambridgeGoogle Scholar
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876 PubMedCrossRefGoogle Scholar
  28. Toda S, Osakabe M, Komazaki S (2000) Interspecific diversity of mitochondrial COI sequences in Japanese Panonychus species (Acari: Tetranychidae). Exp Appl Acarol 24:821–829. doi:10.1023/A:1006484018547 PubMedCrossRefGoogle Scholar
  29. Valiente Moro C, Chauve C, Zenner L (2007) Experimental infection of Salmonella enteritidis by the poultry red mite, Dermanyssus gallinae. Vet Parasitol 146:329–336. doi:10.1016/j.vetpar.2007.02.024 PubMedCrossRefGoogle Scholar
  30. Valiente Moro C, De Luna C, Guy JH, Sparagano OAE, Zenner L (2008) The poultry red mite, D. gallinae, a potential vector of pathogenic agents. Exp Appl Acarol. doi:10.1007/s10493-009-9248-0
  31. Zeman P, Stika V, Skalka B, Bártík M, Dusbábek F, Lávicková M (1982) Potential role of Dermanyssus gallinae De Geer, 1778 in the circulation of the agent of pullurosis-typhus in hens. Folia Parasitol (Praha) 29:371–374Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Marangi
    • 1
  • C. J. de Luna
    • 2
  • M. A. Cafiero
    • 3
  • A. Camarda
    • 4
  • S. le Bouquin
    • 5
  • D. Huonnic
    • 5
  • A. Giangaspero
    • 1
  • O. A. E. Sparagano
    • 2
  1. 1.Dipartimento PrIME, Centro Interdipartimentale BIOAGROMEDUniversità degli Studi di FoggiaFoggiaItaly
  2. 2.School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK
  3. 3.Istituto Zooprofilattico Sperimentale della Puglia e BasilicataFoggiaItaly
  4. 4.Dipartimento di Sanità pubblica e ZootecniaUniversità di BariBariItaly
  5. 5.Unité EBEAC, AFSSA-BP 53PloufraganFrance

Personalised recommendations