Experimental and Applied Acarology

, Volume 48, Issue 1–2, pp 105–113 | Cite as

Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae)

  • Carlos J. De Luna
  • Claire Valiente Moro
  • Jonathan H. Guy
  • Lionel Zenner
  • Olivier A. E. Sparagano


This study investigated the endosymbiotic bacteria living inside the poultry red mite collected from five samples of one commercial farm from the UK and 16 farms from France using genus-specific PCR, PCR-TTGE and DNA sequencing. Endosymbiotic bacteria are intracellular obligate organisms that can cause several phenotypic and reproductive anomalies to their host and they are found widespread living inside arthropods. The farm sampled from the UK was positive for bacteria of the genera Cardinium sp. and Spiroplasma sp. From France, 7 farms were positive for Cardinium sp., 1 farm was positive for Spiroplasma sp., 1 farm was positive for Rickettsiella sp. and 2 farms were positive for Schineria sp. However, it was not possible to detect the presence of the genus Wolbachia sp. which has been observed in other ectoparasites. This study is the first report of the presence of endosymbionts living inside the poultry red mite. The results obtained suggest that it may be possible that these bacterial endosymbionts cause biological modifications to the poultry red mite.


Endosymbiont Cardinium Spiroplasma Rickettsiella Schineria Poultry red mite Dermanyssus gallinae 



This work was supported financially by the European Commission through the STREP project “RESCAPE”, contract no. 036018, under the sixth Framework Programme, priority 5, food quality and safety.


  1. Beugnet F, Chauve C, Gauthey M, Beert L (1997) Resistance of the red poultry mite to pyrethroids in France. Vet Rec 140:577–579PubMedGoogle Scholar
  2. Charlat S, Bourtzis K, Merçot H (2001) Wolbachia-induced cytoplasmic incompatibility. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 621–644Google Scholar
  3. Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Vet Parasitol 79:239–245. doi: 10.1016/S0304-4017(98)00167-8 PubMedCrossRefGoogle Scholar
  4. Chirico J, Tauson R (2002) Traps containing acaricides for the control of Dermanyssus gallinae. Vet Parasitol 110:109–116. doi: 10.1016/S0304-4017(02)00310-2 PubMedCrossRefGoogle Scholar
  5. Chirico J, Eriksson H, Fossum O, Jansson D (2003) The poultry red mite, Dermanyssus gallinae, a potential vector of Erysipelothrix rhusiopathiae causing erysipelas in hens. Med Vet Entomol 17:232–234. doi: 10.1046/j.1365-2915.2003.00428.x PubMedCrossRefGoogle Scholar
  6. Desloire S, Valiente Moro C, Chauve C, Zenner L (2006) Comparison of four methods of extracting DNA from D. gallinae (Acari: Dermanyssidae). Vet Res 37:725–732. doi: 10.1051/vetres:2006031 PubMedCrossRefGoogle Scholar
  7. Enigl M, Schausberger P (2007) Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp Appl Acarol 42:75–85. doi: 10.1007/s10493-007-9080-3 PubMedCrossRefGoogle Scholar
  8. Fujii Y, Kubo T, Ishikawa H, Sasaki T (2004) Isolation and characterization of the bacteriophage WO from Wolbachia an arthropod endosymbiont. Biochem Biophys Res Commun 317:1183–1188. doi: 10.1016/j.bbrc.2004.03.164 PubMedCrossRefGoogle Scholar
  9. Fukatsu T, Nikoh N (2000) Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl Environ Microbiol 66:643–650. doi: 10.1128/AEM.66.2.643-650.2000 PubMedCrossRefGoogle Scholar
  10. Gotoh T, Noda H, Ito S (2007a) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20. doi: 10.1038/sj.hdy.6800881 PubMedCrossRefGoogle Scholar
  11. Gotoh T, Sugusawa J, Noda H, Kitashima Y (2007b) Wolbachia-induced cytoplasmic incompatibility in Japanese populations of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 42:1–6. doi: 10.1007/s10493-007-9072-3 PubMedCrossRefGoogle Scholar
  12. Hedges LM, Brownlie JC, O’Neill SL, Johnson KP (2008) Wolbachia and virus protection in insects. Science 322:702PubMedCrossRefGoogle Scholar
  13. Holden PR, Brookfield FY, Jones P (1993) Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet 240:213–220. doi: 10.1007/BF00277059 PubMedCrossRefGoogle Scholar
  14. Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteroidetes includes cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond B Biol Sci 270:2185–2190. doi: 10.1098/rspb.2003.2475 CrossRefGoogle Scholar
  15. Hurst GDD, der Schulenburg JHG, Majerus TMO, Bertrand D, Zakharov IA, Baungaard J, Volkl W, Stothamer R, Majerus MEN (1999) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8:133–139. doi: 10.1046/j.1365-2583.1999.810133.x PubMedCrossRefGoogle Scholar
  16. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405. doi: 10.1046/j.1365-2583.2000.00203.x PubMedCrossRefGoogle Scholar
  17. Marangi M, Cafiero MA, Capelli G, Camarda A, Sparagano OAE, Giangaspero A (2008) Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field population from Italy. Exp Appl Acarol. doi: 10.1007/s10493-008-9224-0 PubMedGoogle Scholar
  18. Montenegro H, Petherwick AS, Hurst GDD, Klaczko LB (2006) Fitness effects of Wolbachia and Spiroplasma in Drosophila melanogaster. Genetica 127:207–215. doi: 10.1007/s10709-005-3766-4 PubMedCrossRefGoogle Scholar
  19. Morimoto S, Kurtti TJ, Noda H (2006) In vitro cultivation and antibiotic susceptibility of a Cytophaga-like intracellular symbiont isolated from the tick Ixodes scapularis. Curr Microbiol 52:324–329. doi: 10.1007/s00284-005-0349-7 PubMedCrossRefGoogle Scholar
  20. Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63:3926–3932PubMedGoogle Scholar
  21. O’Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702. doi: 10.1073/pnas.89.7.2699 PubMedCrossRefGoogle Scholar
  22. Perlman SJ, Kelly SE, Zchori-Fein E, Hunter MS (2006) Cytoplasmic incompatibility and multiple symbiont infection in the ash whitefly parasitoid, Encarsia inaron. Biol Control 39:474–480. doi: 10.1016/j.biocontrol.2006.05.015 CrossRefGoogle Scholar
  23. Perlman SJ, Kelly SE, Hunter MS (2008) Population biology of cytoplasmic incompatibility: maintenance and spread of Cardinium symbionts in a parasitic wasp. Genetics 178:1003–1011. doi: 10.1534/genetics.107.083071 PubMedCrossRefGoogle Scholar
  24. Pool JE, Wong A, Aquadro CF (2006) Finding of male-killing Spiroplasma infecting Drosophila melanogaster in Africa implies transatlantic migration of this endosymbiont. Heredity 97:27–32. doi: 10.1038/sj.hdy.6800830 PubMedCrossRefGoogle Scholar
  25. Reeves WK, Dowling APG, Dasch GA (2006) Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Exp Appl Acarol 38:181–188. doi: 10.1007/s10493-006-0007-1 PubMedCrossRefGoogle Scholar
  26. Sparagano OAE, De Luna CJ (2008) From population structure to genetically-engineered vectors: new ways to control vector-borne diseases? Infect Genet Evol 8:520–525. doi: 10.1016/j.meegid.2007.05.002 PubMedCrossRefGoogle Scholar
  27. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  28. Sutakova G, Arutunyan ES (1990) The spider-mite predator Phytoseiulus persimilis and its association with microorganisms—an electron-microscopy study. Acta Entomol Bohemoslov 87:431–434Google Scholar
  29. Tinsley MC, Majerus MEN (2006) A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology 132:757–765. doi: 10.1017/S0031182005009789 PubMedCrossRefGoogle Scholar
  30. Toth E, Kovacs G, Schumann P, Kovacs AL, Steiner U, Halbritter A, Marialigeti K (2001) Schineria larvae gen. nov. sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 51:401–407PubMedGoogle Scholar
  31. Toth EM, Hell E, Kovacs G, Borsodi AK, Marialigeti K (2006) Bacteria isolated from the different developmental stages and larval organs of the obligate parasitic fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microb Ecol 51:13–21. doi: 10.1007/s00248-005-0090-6 PubMedCrossRefGoogle Scholar
  32. Valiente Moro C, Chauve C, Zenner L (2005) Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite 12:99–109PubMedGoogle Scholar
  33. Valiente Moro C, Fravalo P, Amelot M, Chauve C, Zenner L, Salvat G (2007) Colonization and organ invasion in chicks experimentally infected with Dermanyssus gallinae contaminated by Salmonella Enteritidis. Avian Pathol 36:307–311. doi: 10.1080/03079450701460484 CrossRefGoogle Scholar
  34. Valiente Moro C, Thioulouse J, Chauve C, Normand P, Zenner L (2008) Bacterial taxa associated with hematophagous mite Dermanyssus gallinae detected by 16S rDNA amplification and TTGE fingerprinting. Res Microbiol. doi: 10.1016/j.resmic.2008.10.006 PubMedGoogle Scholar
  35. Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482. doi: 10.1126/science.1060411 PubMedCrossRefGoogle Scholar
  36. Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc Lond B Biol Sci 270:1857–1865. doi: 10.1098/rspb.2003.2425 CrossRefGoogle Scholar
  37. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  38. Werren JH, Skinner SW, Huger AM (1986) Male-killing bacteria in a parasitic wasp. Science 231:990–992. doi: 10.1126/science.3945814 PubMedCrossRefGoogle Scholar
  39. Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016. doi: 10.1111/j.1365-294X.2004.02203.x PubMedCrossRefGoogle Scholar
  40. Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci USA 98:12555–12560. doi: 10.1073/pnas.221467498 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Carlos J. De Luna
    • 1
    • 4
  • Claire Valiente Moro
    • 2
  • Jonathan H. Guy
    • 1
  • Lionel Zenner
    • 3
  • Olivier A. E. Sparagano
    • 1
  1. 1.School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastle Upon TyneUK
  2. 2.Laboratoire “Microorganismes: Génome et Environnement”CNRS UMRAubièreFrance
  3. 3.Laboratoire de Biométrie et Biologie Evolutive, Ecole Nationale Vétérinaire de Lyon & Université de LyonCNRS UMRMarcy L’EtoileFrance
  4. 4.School of Equine and Animal ScienceWrittle CollegeWrittleUK

Personalised recommendations